Adapting Natural Language Processing Systems to New Domains

John Blitzer

Joint with: Shai Ben-David, Koby Crammer, Mark Dredze, Fernando Pereira, Alex Kulesza, Ryan McDonald, Jenn Wortman

NLP models – Single domain setting

Model estimation (training)

- data annotation
- training procedure

Syntactic analysis

- Information extraction
- Content-based advertisement

Model application (testing)

Training and testing samples are from the same distribution

Theoretical guarantees for large training samples

In practice, state-of-the art models have low error

NLP models, different domains

Model estimation (training)

Source domain

Model application (testing)

When we apply models in different domains, we encounter differences in vocabulary

No theoretical guarantees for large source samples

State of the art models more than double in error

1. Structural correspondence learning (SCL)

2. A formal analysis of domain adaptation

Books & kitchen appliances

Running with Scissors: A Memoir	Avante Deep Fryer, Chrome &			
Title: Horrible book, horrible.	Black			
This book was horrible. I read half	Title: lid does not work well			
of it, suffering from a headache the	I love the way the Tefal deep fryer			
Error increase: 13% → 26%				
fire. One less copy in the	my second one due to a defective			
worlddon't waste your money. I	lid closure. The lid may close			
wish i had the time spent reading this	initially, but after a few uses it no			
book back so i could use it for better	longer stays closed. I will not be			
purposes. This book wasted my life	purchasing this one again.			

SCL: 2-step learning process

Step 1: Unlabeled – Learn correspondence mapping

Step 2: Labeled – Learn weight vector

Labeled. Learn V
$$\Phi(\mathbf{x}) \implies \operatorname{sgn}(\mathbf{v} \cdot \Phi(\mathbf{x}))$$

- Φ should make the domains look as similar as possible
- But Φ should also allow us to classify well

SCL: making domains look similar

Incorrect classification of kitchen review

defective lid

Unlabeled kitchen contexts

- Do **not buy** the Shark portable steamer Trigger mechanism is **defective**.
- the very nice lady assured me that I must have a defective set What a disappointment!
- Maybe mine was **defective** The directions were **unclear**

Unlabeled **books** contexts

- The book is so repetitive that I found myself yelling I will definitely not buy another.
- A disappointment Ender was talked about for <#> pages altogether.
- it's unclear It's repetitive and boring

- Occur frequently in both domains
- Characterize the task we want to do
- Number in the hundreds or thousands
- Choose using labeled source, unlabeled source & target data

Words & bigrams that occur frequently in both domains	Frequency together with conditional entropy on labels		
book one <num> so all</num>	a_must a_wonderful loved_it		
very about they like good	weak don't_waste awful		
when	highly_recommended and_easy		

Use **pivot features** to align other features

(1) The bo	ok is so repetitive that I	(2) Do	the Shark portable
found mys	elf yelling I will	steamer	. Trigger mechanism is
definitely	another.	defective.	

Pivot predictors implictly align source & target features

- Mask pivot features and predict them using other features
- N pivots → train N **linear predictors**
 - One for each binary problem
 - Let \mathbf{w}_i be the weight vector for the ith predictor

SCL: dimensionality reduction

University of California

Berkelev

- Many pivot predictors give similar information
 - "horrible", "terrible", "awful"
- Hard to solve optimization with N dense features per instance
- Compute SVD of W & use top k left singular vectors Φ
 - Top orthonormal principal pivot predictors
 - If we chose our pivots well, then $\mathbf{\Phi}^T \mathbf{x}$ will give us good features for classification in both domains

Back to labeled training / testing

Classifier sgn
$$\left[\mathbf{w} \cdot \mathbf{x} + \mathbf{v} \cdot \mathbf{\Phi}^T \mathbf{x} \right]$$

- Source training: Learn \mathbf{w} & \mathbf{v} together

- Target testing: First apply $_w$, then apply v and Φ

Using labeled target data

50 instances of labeled target domain data

Source data, save weights for SCL features \mathbf{v}_S

Target data, regularize weights v_T to be close to v_S

1. Alternating Structural Optimization (ASO)

- Ando & Zhang (JMLR 2005)
- Training predictors using unlabeled data

2. Correspondence Dimensionality Reduction

- Ham, Lee, & Saul (AISTATS 2003)
- Learn a low-dimensional representation from highdimensional correspondences

- Product reviews from Amazon.com
 - Books, DVDs, Kitchen Appliances, Electronics
 - 2000 labeled reviews from each domain
 - 3000 6000 unlabeled reviews

Binary classification problem

- Positive if 4 stars or more, negative if 2 or fewer
- Features: unigrams & bigrams

Visualizing Φ (books & kitchen)

Results: 50 labeled target instances

- With 50 labeled target instances, SCL always improves over baseline.
- Overall relative reduction is 36% relative

Theoretical Analysis: Using labeled data from multiple domains

Study the tradeoff between accurate but scarce target data and plentiful but biased source data

Analyze algorithms which minimize convex combinations of source & target risk

Give a generalization bound that is computable from finite labeled & unlabeled samples

Relating source & target error

A basic bound:

Let h be a binary hypothesis from class \mathcal{H} and $\mathcal{D}_S, \mathcal{D}_T$ be source and target distributions. Then

- Measureable from finite
 unlabeled samples
- Related to hypothesis class $\, {\cal H} \,$

- Not measurable from unlabeled samples
- Small for realistic NLP problems

Idea: Measure subsets where hypotheses in ${\cal H}$ disagree

Let \mathcal{H} be a hypothesis class. Denote by $\mathcal{H}\Delta\mathcal{H}$ the set of subsets of \mathcal{X} where two hypotheses in \mathcal{H} disagree.

$$d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_S,\mathcal{D}_T) = 2 \sup_{A \in \mathcal{H}\Delta\mathcal{H}} \left| \int_A p_T(\mathbf{x}) - p_S(\mathbf{x}) d\mathbf{x} \right|$$

Subsets A are symmetric differences of two hypotheses

Where does h_1 make errors with respect to h_2 ?

The $\mathcal{H}\Delta\mathcal{H}$ distance

$$d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_S,\mathcal{D}_T) = 2 \sup_{A\in\mathcal{H}\Delta\mathcal{H}} \left| \int_A p_T(\mathbf{x}) - p_S(\mathbf{x}) d\mathbf{x} \right|$$

- 1. Always lower than L_1
- 2. Computable from finite **unlabeled** samples.
- 3. Easy to compute: train classifier to discriminate between source and target instances

For unlabeled samples \mathcal{U}_S, U_T , we write $\hat{d}_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{U}_S, \mathcal{U}_T)$

There exists some h^* which performs well on both domains

$$h^* = \operatorname*{argmin}_{h \in \mathcal{H}} \epsilon_{\mathcal{D}_S}(h) + \epsilon_{\mathcal{D}_T}(h)$$

$$\underset{h \in \mathcal{H}}{h \in \mathcal{H}}$$

$$\boldsymbol{\lambda} = \epsilon_{\mathcal{D}_S}(h^*) + \epsilon_{\mathcal{D}_T}(h^*)$$

 λ must be small in order to learn from only source labeled data

Combining source & target labeled data

The α -risk: $\epsilon_{\alpha}(h) = \alpha \epsilon_{D_T}(h) + (1 - \alpha) \epsilon_{D_S}(h)$

We investigate algorithms which minimize the empirical $\alpha\text{-risk}$

Let *h* be a binary hypothesis. Then $|\epsilon_{\alpha}(h) - \epsilon_{\mathcal{D}_T}(h)| \leq (1 - \alpha) \left(d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_S, \mathcal{D}_T) + \lambda \right)$

Let \hat{h}_{α} and h_{T}^{*} indicate the empirical α -risk and

Tradeoff:Complexity term increases as α moves away from β Divergence term increases as α moves away from 1

labeled target and source examples, respectively.

 $\epsilon_{\mathcal{D}_T}(h_{\alpha}) \leq \epsilon_{\mathcal{D}_T}(h_T^*) + \mathcal{Q}(1-\alpha) \left(d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_S, \mathcal{D}_T) + \right)$ $\frac{(1-\alpha)^2}{1-\beta} \times \tilde{O}\left(\sqrt{\frac{d}{m}}\right)$

- Given as input
- Computable from unlabeled data
- Assumed to be small

- Look at the shape of the bound vs. empirical error for different values of $\,\alpha\,$
- Vary input parameters:
 - 1. distance between source and target
 - 2. amount of source data

Increasing m_S corresponds to increasing m and decreasing β

Vary distance, $m_S = 2500, m_T = 1000$

- Same relative ordering: higher distance means higher risk
- Same convex shape: errorminimizing alpha reflects distance
- Very different actual numbers: empirical error much lower

Vary source size, $m_T = 2500$, dist = 0.715

- Same relative ordering: more source data is better
- With enough target data, it's always better to set α=1, regardless of amount of source data

A phase transition in the optimal $\boldsymbol{\alpha}$

After a fixed amount of target data, adding source data is not helpful Plot optimal α for varying amounts of source and target data With 3130 or more target instances, the optimal α is always 1 $d_{H\Delta \mathcal{H}} = 0.715$

- Our theory shows that decreasing $d_{\mathcal{H} \Delta \mathcal{H}}$ can lead to a decrease in error due to adaptation
 - But we have no theory that suggests an algorithm for using unlabeled data in domain adaptation
- What if we have many source domains
 - There exists a kind of hierarchical structure on sources
 - Can we design an algorithm which has low regret with respect to the best model from each one?

Thanks