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NLP models T Single domain setting

Berkeley

Training and testing samples are from the same distribL

Theoretical guarantees for large training samples

In practice, statef-the art models have low error
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Model estimation (training)
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NLP models, different domains

Berkeley

When we apply models in different domains, we encou
differences in vocabulary

No theoretical guarantees for large source samples

State of the art models more than double In error



2-part talk

1. Structural correspondence learning (SCL)

2. A formal analysis of domadaptation
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Product Review Multiple Domains
kitchen
Linear classifier books appliances

Positive Negative




University of
California

Books & kitchen appliances

Berkeley

Running with Scissors: A Memoir

Title: Horrible book, horrible.

This book was horrible. | read half

of it, suffering from a headache the

Avante Deep Fryer, Chrome &
Black

Title: lid does not work well...

| love the way thdefaldeep frver

Error increase: 13% 26%

fire. One less copy In the

world...don't waste your money.

fe

wishi had the time spent reading this initially, but after a few uses it ng

book back so could use it for bettT
I

purposes. This book wasted my

my second one due to a defecti\)e

lid closure. The lid may close

longer stays closed. | will not be

purchasing this one again.
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SCL: 2-step learning process
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Step 1: Unlabeléd_earn

correspondence mapping

XS
1
0

Unlabeled.
Learn®

= O

o...

\l

®(x)
0.3
1.0

0.7
2.1

Step 2: LabeldadLearn
welight vector

Labeled. LeariV

®(x) M sgn (v-P(x))

Ad shouldmake the domainsok
assimilar as possible

AButd should also allow us to
classifywell
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SCL: making domains look similar
Berkeley

Incorrect classification of kitchen reyviedefectivdid

Unlabelekitchencontexts Unlabeledookscontexts

ADonot buythe Shark portable steame®The book is sepetitivethat |

| definitelyot buyanother.
Athe very nice lady assured me that |

disappointmenmt talkedabout fox#> pages
| o altogether

AMaybe mine wasfectived . T h e

directiong/ereunclear A turiclsaré . | t Os

boring

é .Trigger mechanisma$ective foundny s el f yel | i|r

mushave alefectives et é .  WAHRAdisappaintmeré . En d e|r

r € |
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SCL: pivot features

Berkeley

AOccufrequently in both domains
ACharacterize the task we want to do
ANumber in the hundreds or thousands

AChoose using labetedrce unlabelesburce& targetdata

Words bigrams that occur Frequency together with
frequently In both domains condition&ntropwn labels

book one <num> so all a _must a wonderful loved it

very about they Ilike good weak donot waavkik e
when highly recommended and easy
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SCL unlabeled step: pivot predictors

Berkeley
Usepivot featureso align other features

(1) Thebook is stepetitivethat | (2) D@ theShark portable
foundny sel f wilkel | 1 ng ®eamee. Tr i gger
deflnltel-another defective

Pivot predictorganplictlyalign source & target feature

AMaskpivoffeaturesind predict them usitiuer features

AN pivot#\ train Ninear predictors

AOnefor each binary problem
AlLetw; be the weigbttofor théth predictor
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SCL: dimensionality reduction

Berkeley
‘ m ‘ /W T'x gives N new features
Wi ... | Wi ... Wy _ : :
‘ ‘ ‘ Avalue affeature is the propensity
U see0 n 0 t Inthe same document

AMany pivot predictors give similar information
Ahorribled, oterribleo, oawful

AHard to solve optimization with N dense features per instance

ACompute SVD of W & use top k left singular vitors

AToporthonormaprincipal pivot predictors

Alf we chose our pivots well, thd ! x will give us good features
classification in both domains
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| Back to labeled training / testing

Berkeley

X ] _
! Classifiersgn |w-x + v-®lx

. ASourcetrainingkLearrw & v together

ATargetestingFirst appsw , then appl

T
(I)O 3X Vv and®

-1.0

0.7
2.1




Using labeled target data

50 instances of labeled target domain data

Source data, save weights for SCL feav g2s

Target data, regularize weigVT tobe close tvg

Chelb&AceroEMNLP 2004

-

—

Huberizedhinge lo Keep SCL weights close to source weights
Avoid using higldimensional features
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Inspirations for SCL
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1. Alternating Structural Optimization (ASO)
A Ando & Zhang (JMLR 2005)

A Training predictors using unlabeled data

2. Correspondence Dimensionality Reduction
A Ham, Lee, & Saul (AISTATS 2003)

A Learn a low-dimensional representation from high-
dimensional correspondences
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Sentiment classification data

A Product reviews from Amazon.com

A Books, DVDs, Kitchen Appliances, Electronics
A 2000 labeled reviews from each domain
A 30007 6000 unlabeled reviews

A Binary classification problem
A Positive if 4 stars or more, negative if 2 or fewer

A Features: unigrams & bigrams
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negative VS. positive
books
engaging |must reabl

plot <#> pages predictablé fascinatin

________ _-L
RN
poorILdeSign&jawkward |

O

N
the plasti¢ leaking

qusharﬁu
N
L 1
espresso\ years_now
are perfeck a oreez\e

kitchen




Results: 50 labeled target instances

B Chelba & Acero B Chelba & Acero + SCL

90 —— books dvd electronics Kitchen

87.7
85 .y 84.4 85.9
80 80.4

78.5

77.9

84.3
715 T 20 76.8 76.6 76.6 W
73.2 73.0 74.3 .
g B B B BB BB
65 -
E->B K->B B->D K->D B->E D->E B->K E->K

AWith 50 labeled target instaBisiways
Improvesverbaseline.

AOverall relative reduction is 36% relative



i Theoretical Analysis: Using labeled
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data from multiple domains
Berkeley

Study the tradeoff betweaocurate but scarce target
dataandplentiful but biased source data

Analyze algorithms which minimize convex
combinations of source & target risk

Give a generalization bound that iIs computable fro
finite labeled & unlabeled samples
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Relating source & target error
Berkeley

A basic bound:

Let h be a binary hypothesis from class ‘H and Dg, D be
source and target distributions. Then

A Measureable from finite A Not measurable from unlabeled
unlabeled samples samples

A Related to hypothesis claH A Small for realistic NLP problems



University of A8

The HAH distance

Berkeley
ldea: Measure subsets where hypothes7{ in disagree

Let H be a hypothesis class. Denote by HAH the set of
subsets of X where two hypotheses in ‘H disagree.

s (Ds.Dr) =2 _sup [ pr(x) = ps(xix
AcHAH Y] A

Subsets A asymmetric differencesd two hypotheses

hy

Where does make errors
with respect tg?n




The HAH distance

Berkeley

driar(Ds. D) =2 sup / pr(x) — pe(x)dx
AEHAH A

1. Always lower than L
2. Computable from flon&abeledamples.

3. Easy to compute: train classifier to discriminate betwe
and target instances

For unlabeled samples Us, Ur, we write dpan (Us,UT)
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Domain Adaptation Assumption
Berkeley

There exists some A* which performs well
on both domains

h*™ = argminep. (h) + €p..(h)
heH

A =epy(h*) + ep, (hY)

A must be small in order to learn
from only source labeled data



;4 Combining source & target labeled
Berkeley data.

The a-risk: e4(h) = aep,.(h) + (1 — a)ep, (h)

We investigate algorithms which minimize
the empirical a-risk

Let h be a binary hypothesis. Then
€alh) —epp(R)| < (1 — @) (dhan(Ds, Dr) + )



A bound on the target risk

A

Let h, and h% indicate the empirical a-risk and




