Joint Parsing and Alignment with Weakly Synchronized Grammars

David Burkett, John Blitzer, & Dan Klein

在

Statistical MT Training Pipeline

- 1) Align sentence pairs (GIZA++)
- 2) Parse English sentences (Berkeley parser)
 Parse Foreign sentences
- 3) Extract rules (Galley et al. 2006)
- 4) Tune discriminative parameters

里

办公室

读了

书

Joint model for (1) & (2)

Data Setting for Joint Models

English WSJ

Chinese CTB

Unlabeled parallel text

(EN:中文)

(EN:中文)

(EN: (EN : (

(EN;)

(EN ; **(**)

(中文: 📤)

(中文; 🔼)

(中文: 🔷)

(EN;中文)

Parallel, Aligned CTB

(EN,中文; **△** (三)

(EN,中文; **△ △ ;**)

Word alignment grids

在	办公室	里	读了	书	
at	office	in	read	book	•
					read
					the
					book
					in
					the
					office

Syntactic Correspondences

Build a model $p_{\theta}(\triangle, \triangle, | + x, EN)$

Correspondence via Synchronous Grammars

Synchronous derivation

Synchronous Derivation

Correspondence Model & Feature Types

$$p_{ heta}$$
 (\triangle , \triangle , iii | EN,中文)

Feature type 1: Word Alignment

$$\phi(\mathbf{m}, \mathbf{en}, \mathbf{ex})$$

[HBDK09]

Feature type 2: Monolingual Parser

Feature type 3: Correspondence

$$\phi(\triangle, \triangle, \bullet)$$

Estimating θ

ullet Set heta to maximize the log-likelihood of the correct parses & alignments

• $Z(EN, +\dot{\chi})$ normalizes p_{θ} to sum to 1

$$Z(\mathbf{en}, \mathbf{p}\dot{\mathbf{z}}) = \sum_{\mathbf{A}, \mathbf{p}} \exp\left\{\langle \theta, \phi(\mathbf{A}, \mathbf{A}, \mathbf{p}, \mathbf{en}, \mathbf{p}\dot{\mathbf{z}}) \rangle\right\}$$

Computing $Z(EN, +\dot{\chi})$

$$Z(\mathbf{en}, \mathbf{p}) = \sum_{\triangle, \triangle, \bullet} \exp \{ \langle \theta, \phi(\triangle, \triangle, \bullet, \mathbf{en}, \mathbf{p}) \rangle \}$$

Individual \sum_{a} , \sum_{b} have polynomial-time dynamic programming algorithms

Correspondence features tie pieces together

Computing $Z(\mathbf{EN}, +\dot{\mathbf{x}})$ exactly is intractable

Approximating $Z(EN, + \chi)$: Mean Field

- Exploit tractability in individual models: \sum_{\bullet} \sum_{\bullet}
- Factored approximation: $p_{\theta}(\triangle, \triangle, | EN, + \dot{\chi}) \approx q(\triangle)q(\triangle)q(\Box)$
- Set q to minimize $KL\left(q(\triangle)q(\triangle)q(\blacksquare), p_{\theta}(\triangle, \triangle, \blacksquare, \blacksquare, \neg x)\right)$

<u>Algorithm</u>

- 1) Initialize $q(\triangle)$ $q(\triangle)$ $q(\square)$ separately
- 2) Iterate:

$$q(\triangle) \propto \exp \left\{ \langle \theta, \phi(\triangle, E_q(\triangle), E_q(\square)) \rangle \right\}$$

$$q(\triangle) \propto \exp \left\{ \langle \theta, \phi(E_q(\triangle), \triangle, E_q(\square)) \rangle \right\}$$

$$q(\square) \propto \exp \left\{ \langle \theta, \phi(E_q(\triangle), E_q(\triangle), \square) \rangle \right\}$$

Large scale inference

We can approximate $Z(\mathbf{EN}, + \mathbf{\dot{\chi}})$ in polynomial time, but . . .

Sum over possible alignments is an $O(n^6)$ algorithm.

But computers are fast, right?

- Medium-length sentences are 50 words long
- Small translation data sets are 250,000 sentences
- ~4 quadrillion operations (See [BBK10, HBDK09] for speedup details)

Quantitative Results: Parsing

Quantitative Results: Parsing

Quantitative Results: Parsing

Incorrect English PP Attachment

Corrected English PP Attachment

Quantitative Results: Translation

BLEU improvement from 29.4 to 30.6

Better Translations with Bilingual Adaptation

目前	导致	飞机	相撞	的	原因	尚	不	清楚,	当地	民航	部门	将	对此	展开	调查
Cur- rently	cause	plane	crash	DE	reason	yet	not	clear,	local	civil aero-	bureau	will	toward	open	investi- gations

Reference

At this point the cause of the plane collision is still unclear. The local caa will launch an investigation into this.

Baseline (GIZA++)

The cause of planes is still not clear yet, local civil aviation department will investigate this.

Bilingual Adaptation Model

The cause of plane collision remained unclear, local civil aviation departments will launch an investigation .

Thanks