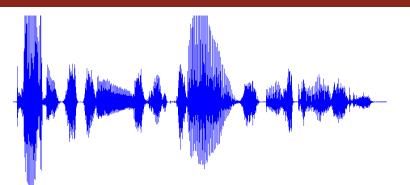


Domain Adaptation with Structural Correspondence Learning John Blitzer

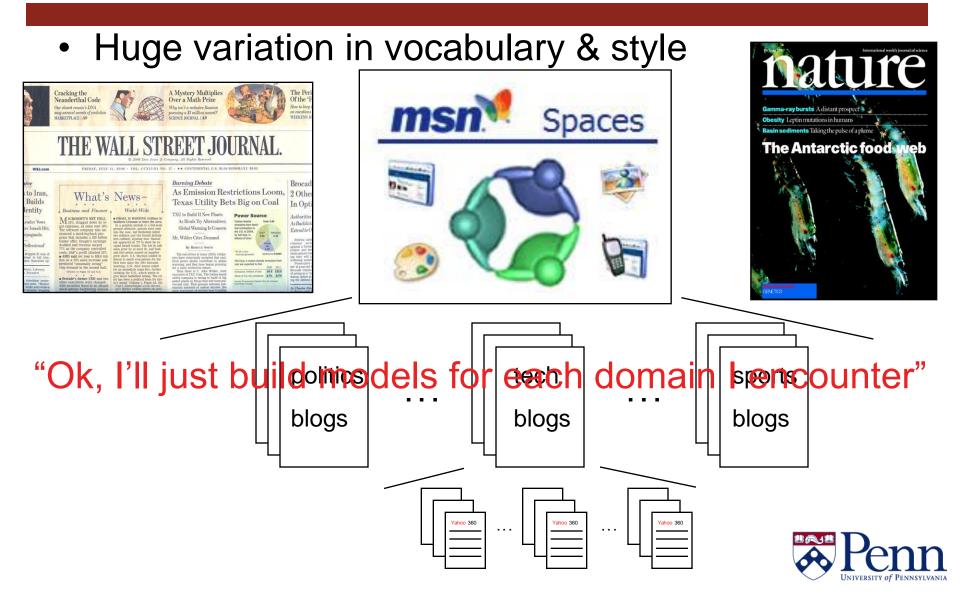
Joint work with

Shai Ben-David, Koby Crammer, Mark Dredze, Ryan McDonald, Fernando Pereira

Statistical models, multiple domains



Different Domains of Text



Sentiment Classification for Product Reviews

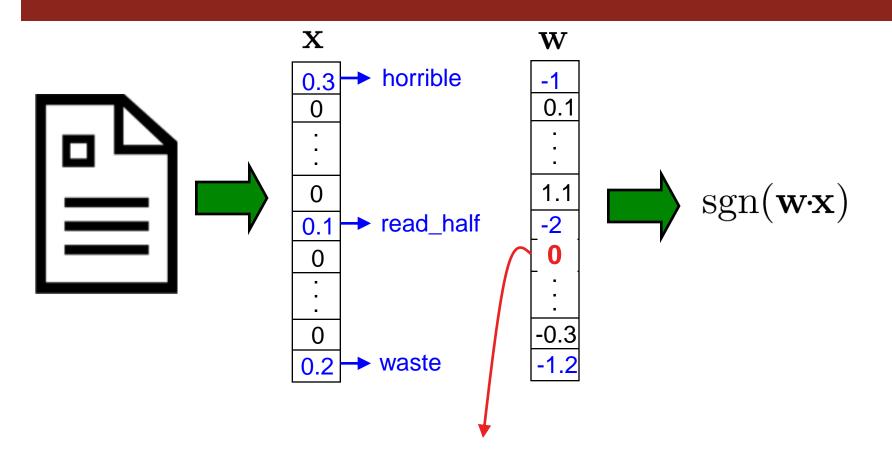


Multiple Domains kitchen books appliances ?? ??

books & kitchen appliances

Running with Scissors: A Memoir Title: Homriddebbookkhhoridible.	Avante Deep Fryer, Chrome & Black Title: lid does mott workkweell	
This book was horrible. I readlhadfoofit, sufferingffoomathbadakhchththentintirtime,	I love the way the Tefal deep fryer cooks, however, I am returning	
Error increase: 13% → 26%		
beausycippthinvtkoeld.orldn'tdwa'stevesteryour	closure. The lid may close initially, but	
money. I wish i had the time spent	after a few uses it no longer stays	
reading this book back so i could use it for	closed. I will not be purchasing this one	
better purposes. This book wasted my life	ogain.	

Features & Linear Models



Problem: If we've only trained on book reviews, then w(defective) = 0

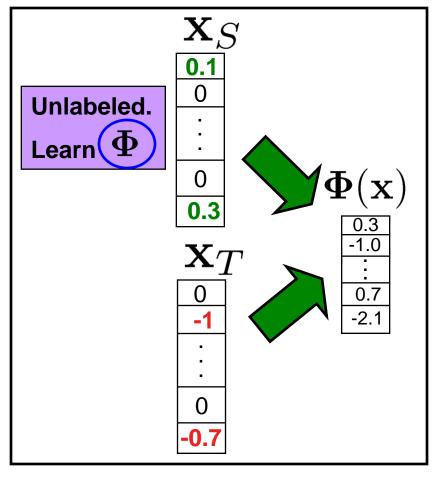
Structural Correspondence Learning (SCL)

- Cut adaptation error by more than 40%
- Use unlabeled data from the target domain
- Induce correspondences among different features
- Labeled data for source domain will help us build a good classifier for target domain

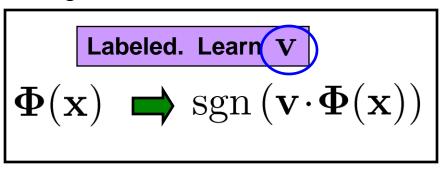
Maximum likelihood linear regression (MLLR) for speaker adaptation (Leggetter & Woodland, 1995)

SCL: 2-Step Learning Process

Step 1: Unlabeled – Learn correspondence mapping



Step 2: Labeled – Learn weight vector



 $ullet \Phi$ should make the domains look as similar as possible

 ${\boldsymbol \cdot}$ But Φ should also allow us to classify well

SCL: Making Domains Look Similar

Incorrect classification of kitchen review

defective lid

Unlabeled kitchen contexts

- Do **not buy** the Shark portable steamer Trigger mechanism is **defective**.
- the very nice lady assured me that I must have a **defective** set What a **disappointment**!
- Maybe mine was defective
 The directions were unclear

Unlabeled **books** contexts

- The book is so **repetitive** that I found myself yelling I will definitely **not buy** another.
- A disappointment Ender was talked about for <#> pages altogether.
- it's **unclear** It's repetitive and **boring**

SCL: Pivot Features

Pivot Features

- Occur frequently in both domains
- Characterize the task we want to do
- Number in the hundreds or thousands
- Choose using labeled **source**, unlabeled **source** & **target** data

SCL: words & bigrams that occur frequently in both domains

SCL-MI: SCL but also based on mutual information with labels

book one <num> so all very about they like good</num>	a_must a_wonderful loved_it weak don't waste awful
when	highly_recommended and_easy

SCL Unlabeled Step: Pivot Predictors

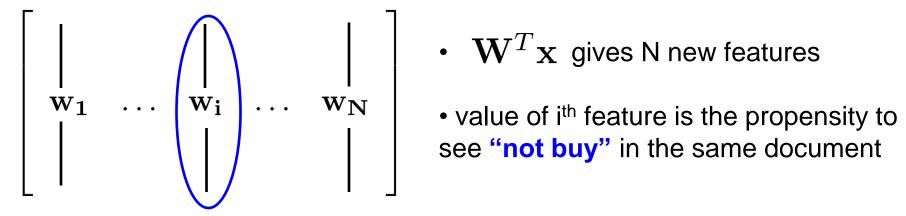
Use **pivot features** to align other features

(1) The book is so **repetitive** that I found myself yelling I will definitely another. (2) Do the Shark portable steamer Trigger mechanism is **defective**.

Binary problem: Does "not buy" appear here?

- Mask and predict pivot features using other features
- Train N linear predictors, one for each binary problem
- Each pivot predictor implicitly aligns non-pivot features from source & target domains

SCL: Dimensionality Reduction

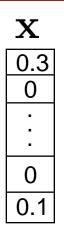


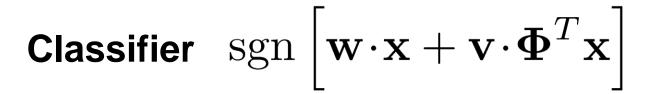
- We still want fewer new features (1000 is too many)
- Many pivot predictors give similar information
 - "horrible", "terrible", "awful"
- Φ Compute SVD & use top left singular vectors

Latent Semantic Indexing (LSI), (Deerwester et al. 1990)

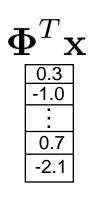
Latent Dirichlet Allocation (LDA), (Blei et al. 2003)

Back to Linear Classifiers





• Source training: Learn W & V together



- Target testing: First apply $\Phi,$ then apply w and v

Inspirations for SCL

1. Alternating Structural Optimization (ASO)

- Ando & Zhang (JMLR 2005)
- Inducing structures for semi-supervised learning

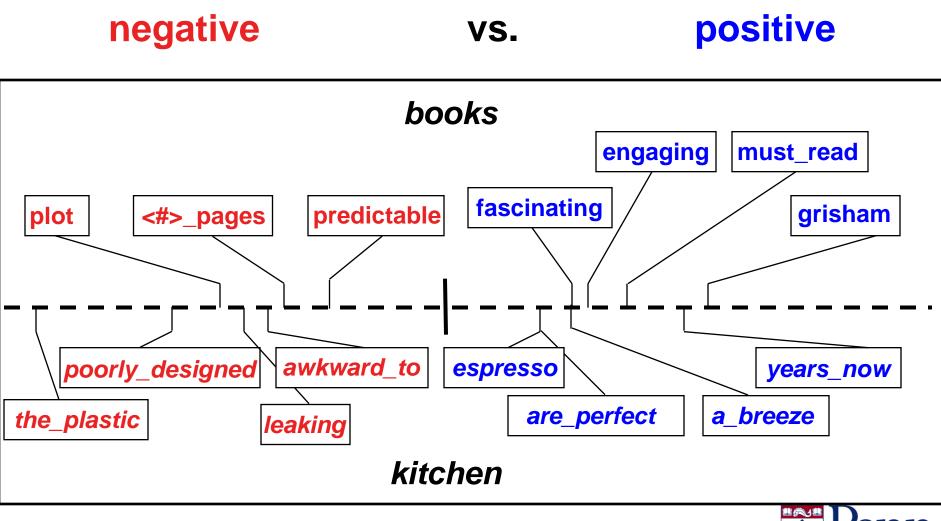
2. Correspondence Dimensionality Reduction

- Ham, Lee, & Saul (AISTATS 2003)
- Learn a low-dimensional representation from highdimensional correspondences

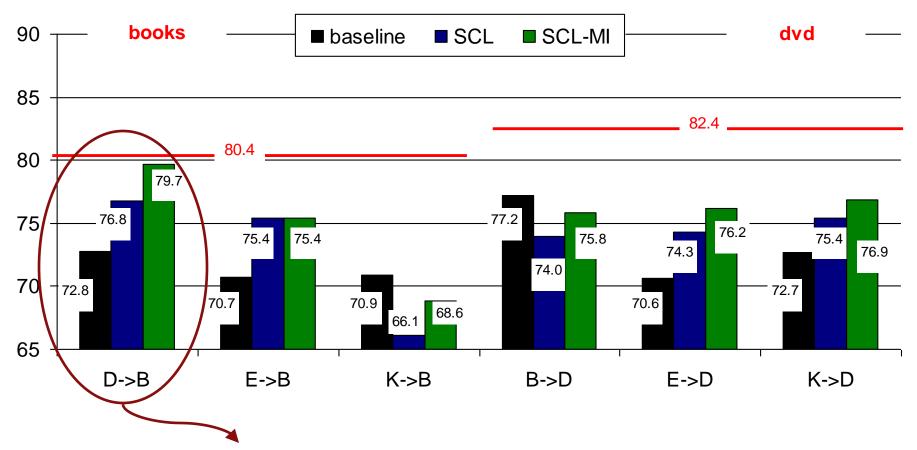
Sentiment Classification Data

- Product reviews from Amazon.com
 - Books, DVDs, Kitchen Appliances, Electronics
 - 2000 labeled reviews from each domain
 - 3000 6000 unlabeled reviews
- Binary classification problem
 - Positive if 4 stars or more, negative if 2 or fewer
- Features: unigrams & bigrams
- Pivots: SCL & SCL-MI
- At train time: minimize Huberized hinge loss (Zhang, 2004)

Visualizing Φ (books & kitchen)



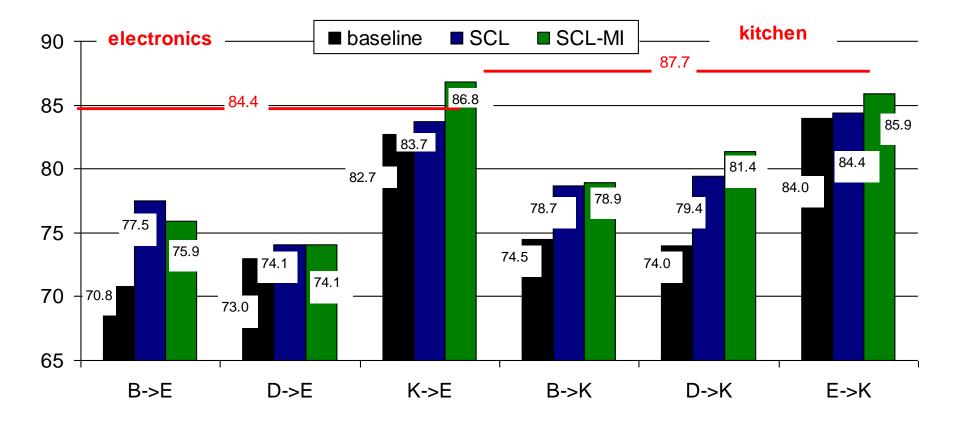
Empirical Results: books & DVDs



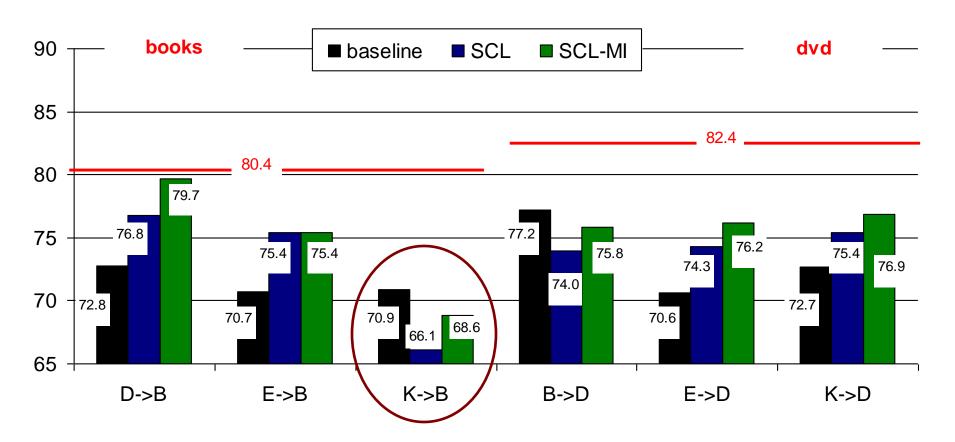
baseline loss due to adaptation: 7.6%

SCL-MI loss due to adaptation: 0.7%

Empirical Results: electronics & kitchen



Empirical Results: books & DVDs



- Sometimes SCL can cause increases in error
- With only unlabeled data, we misalign features

Using Labeled Data

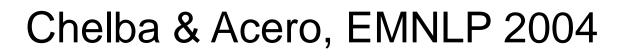
50 instances of labeled target domain data

w, v

 $\lambda ||\mathbf{w}||$

Source data, save weight vector for SCL features V_s

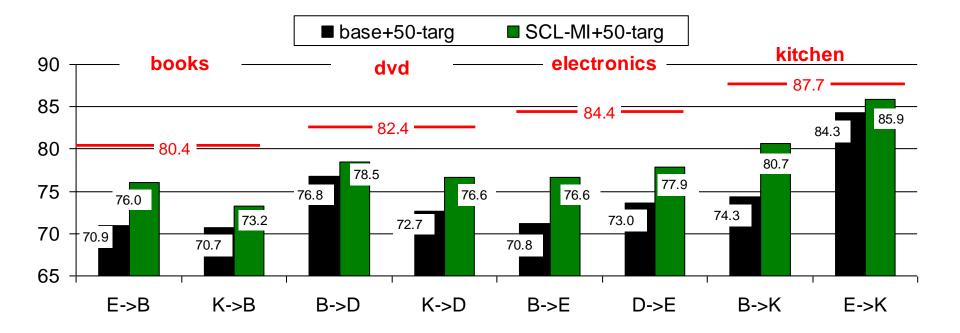
Target data, regularize weight vector to be close to \mathbf{V}_{S}



 $-\mathbf{v}_s||^2$

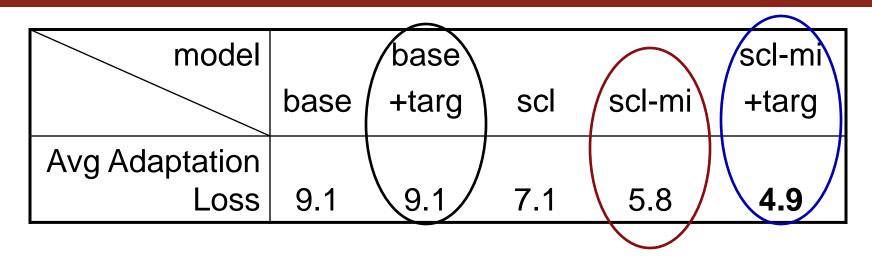
Huberized hinge loss Keep SCL weights close to source weights Avoid using high-dimensional features

Empirical Results: labeled data



• With 50 labeled target instances, SCL-MI **always** improves over baseline

Average Improvements



- scl-mi reduces error due to transfer by 36%
- adding 50 instances [Chelba & Acero 2004] without SCL does not help
- scl-mi + targ reduces error due to transfer by 46%

Error Bounds for Domain Adaptation

 Training and testing data are drawn from different distributions

• Exploit **unlabeled data** to give computable error bounds for domain adaptation

 Use these bounds in an adaptation active learning experiment

A Bound on the Adaptation Error

Let h be a binary hypothesis. If \mathcal{E} is the set of measureable subsets of \mathcal{X} and $\mathcal{D}_S, \mathcal{D}_T$ are source and target distributions with density functions p_S, p_T . Then

$$\epsilon_{\mathcal{D}_{T}}(h) \leq \epsilon_{\mathcal{D}_{S}}(h) + \int |p_{T}(\mathbf{x}) - p_{S}(\mathbf{x})| d\mathbf{x}$$

$$\leq \epsilon_{\mathcal{D}_{S}}(h) + 2 \sup_{E \in \mathcal{E}} |\Pr_{\mathcal{D}_{T}}[E] - \Pr_{\mathcal{D}_{S}}[E]|$$

- 1. Difference across all measurable subsets cannot be estimated from finite samples
- 2. We're only interested in differences related to classification error

The $\mathcal{H}\Delta\mathcal{H}$ distance

Idea: Measure subsets where hypotheses in $\,\mathcal{H}$ disagree

Let \mathcal{H} be a hypothesis class. Denote by $\mathcal{H}\Delta\mathcal{H}$ the set of subsets of \mathcal{X} where two hypotheses in \mathcal{H} disagree.

$$d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_S,\mathcal{D}_T) = 2 \sup_{A \in \mathcal{H}\Delta\mathcal{H}} |\Pr_{\mathcal{D}_T}[A] - \Pr_{\mathcal{D}_S}[A]|$$

Subsets A are error sets of one hypothesis wrt another

- 1. Always lower than L₁
- 2. computable from finite **unlabeled** samples.
- 3. train classifier to discriminate between source and target data

For unlabeled samples \mathcal{U}_S, U_T , we write $\hat{d}_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{U}_S, \mathcal{U}_T)$

The optimal joint hypothesis

$$h^* = \operatorname*{argmin}_{h \in \mathcal{H}} \epsilon_{\mathcal{D}_S}(h) + \epsilon_{\mathcal{D}_T}(h)$$

$$\lambda = \epsilon_{\mathcal{D}_S}(h^*) + \epsilon_{\mathcal{D}_T}(h^*)$$

 h^* is the hypothesis with minimal combined error λ is that error

A Computable Adaptation Bound

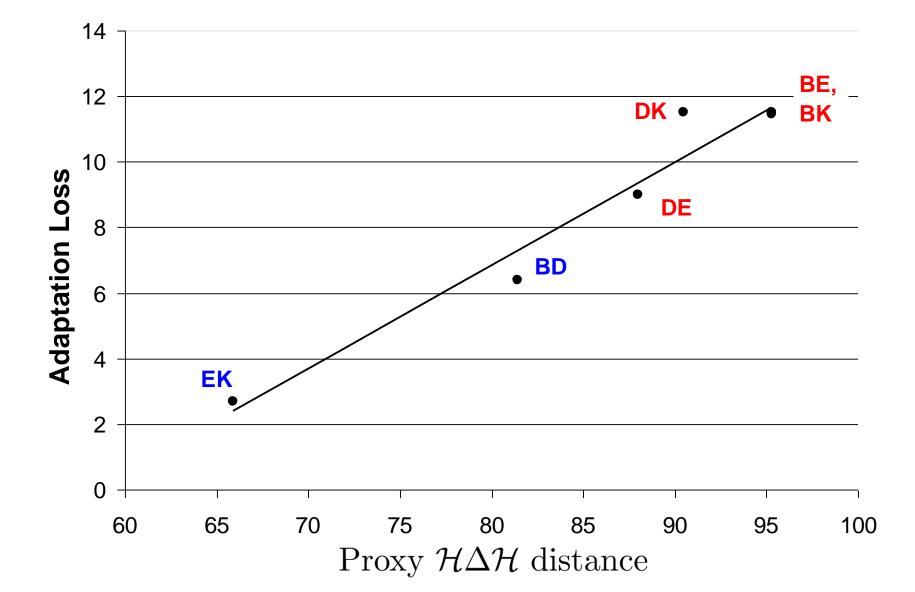
Let \mathcal{H} be a hypothesis class of VC dimension dand $\mathcal{U}_S, \mathcal{U}_T$ be unlabeled samples of size m' each, drawn from $\mathcal{D}_S, \mathcal{D}_T$ respectively. With probability at least $1-\delta$ (over the choice of unlabeled sample), for every $h \in \mathcal{H}$,

 $d_{\mathcal{H} \Delta \mathcal{H}}$ $\epsilon_{\mathcal{D}_T}(h) \leq (\epsilon_{\mathcal{D}_S}(h))$ M_{T} $\frac{d\log\frac{m'}{d} + \log}{m'}$ **Divergence estimation** complexity Dependent on number of unlabeled samples

Adaptation Active Learning

- Given limited resources, which domains should we label?
- Train a classifier to distinguish between unlabeled source and target instances
- Proxy $\mathcal{H} \Delta \mathcal{H}$ distance: classifier margin
- Label domains to get the most coverage – one of (books, DVDs)
 - one of (electronics, kitchen)

Proxy $\mathcal{H}\Delta\mathcal{H}$ distance: Train a linear classifier to distinguish between unlabeled instances from two domains



Adaptation & Ranking

- Input: query & list of top-ranked documents
- Output: Ranking
- Score documents based on editorial or click-through data
- Adaptation: Different markets or query types
- Pivots: common relevant features

Advertisement: More SCL & Theory

Domain Adaptation with Structural Correspondence Learning.

John Blitzer, Ryan McDonald, Fernando Pereira. EMNLP 2006.

Learning Bounds for Domain Adaptation.

John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, Jenn Wortman.

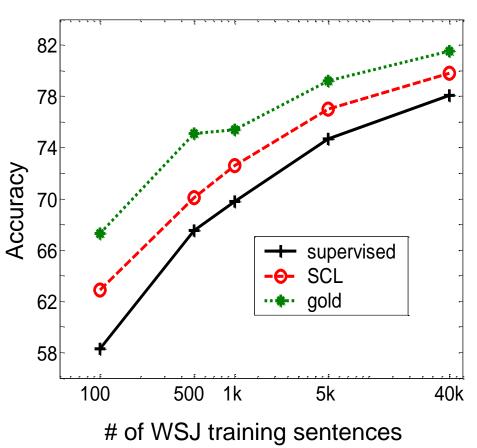
Currently under review.

Pipeline Adaptation: Tagging & Parsing

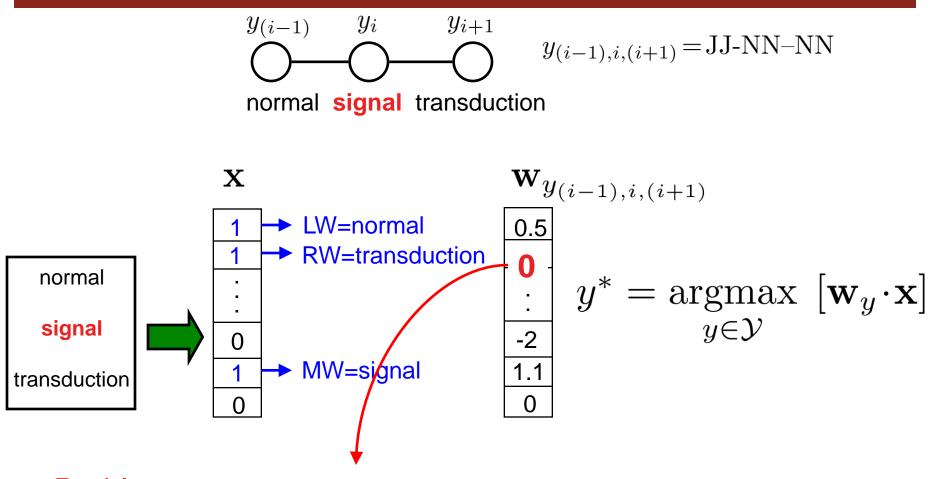
Dependency Parsing

- McDonald et al. 2005
- Uses part of speech tags as features
- Train on WSJ, test on MEDLINE
- Use different taggers for MEDLINE input features

Accuracy for different tagger inputs



Features & Linear Models



Problem: If we've only trained on financial news, then
w(RW=transduction) = 0

Future Work

- SCL for other problems & modalities
 - named entity recognition
 - vision (aligning SIFT features)
 - speaker / acoustic environment adaptation
- Learning low-dimensional representations for multi-part prediction problems
 - natural language parsing, machine translation, sentence compression

Learning Bounds for Adaptation

Standard learning bound, binary classification

Let \mathcal{H} be a hypothesis class of VC dimension d. If we draw m samples $\mathbf{x} \in \mathcal{S}$ from \mathcal{D} and label them according to $f : \mathcal{X} \to [0, 1]$, then with probability $1 - \delta$, for every $h \in \mathcal{H}$,

$$\epsilon_{\mathcal{D}}(h, f) \leq \hat{\epsilon}_{\mathcal{S}}(h, f) + O\left(\sqrt{\frac{d\log\frac{m}{d} + \log\frac{1}{\delta}}{m}}\right)$$

 Target data is drawn from a different distribution than source data