Unsupervised Domain Adaptation: From Practice to Theory

John Blitzer

Unsupervised Domain Adaptation

Avante Deep Fryer; Black

Title: lid does not work well...

I love the way the Tefal deep fryer cooks, however, I am returning my second one due to a defective lid closure. The lid may close initially, but after a few uses it no longer stays closed. I won't be buying this one again.

Source

Target-Specific Features

This book was horrible. I read half, suffering from a headache the entire time, and eventually i lit it on fire. 1 less copy in the world. Don't waste your money. I wish i had the time spent reading this book back. It wasted my life

Avante Deep Fryer; Black

amazon.com[®]

Title: lid does not work well...

I love the way the Tefal deep fryer cooks, however, I am returning my second one due to a defective lid closure. The lid may close initially, but after a few uses it no longer stays closed. I won't be buying this one again.

Target

Source

Learning Shared Representations

Shared Representations: A Quick Review

Blitzer et al. (2006, 2007). <u>Shared CCA</u>.

Tasks: Part of speech tagging, sentiment.

Xue et al. (2008). Probabilistic LSA

Task: Cross-lingual document classification.

Guo et al. (2009). Latent Dirichlet Allocation

Task: Named entity recognition

Huang et al. (2009). Hidden Markov Models

Task: Part of Speech Tagging

Adaptation Learning Theory: $\epsilon_{ ext{tar}}$

$$\epsilon_{\text{target}} \leq ??$$

1. A computable (source) sample bound on target error

- 2. A formal description of empirical phenomena
 - Why do shared representations algorithms work?
- 3. Suggestions for future research

- Target Generalization Bounds using Discrepancy Distance
 [BBCKPW 2009]
 [Mansour et al. 2009]
 - h
- Coupled Subspace Learning [BFK 2010]

Formalizing Domain Adaptation

Source distribution

 $(x,y) \sim \Pr_S[x,y]$

Target distribution

$$(x,y) \sim \Pr_T[x,y]$$

Source labeled data

 $x \sim \Pr_S[x]$

Target unlabeled data

$$x \sim \Pr_T[x]$$

 $y \sim \Pr_S[y|x]$

Formalizing Domain Adaptation

Source distribution

$$(x,y) \sim \Pr_S[x,y]$$

Target distribution

$$(x,y) \sim \Pr_T[x,y]$$

Source labeled data

 $y \sim \Pr_S[y|x]$

 $x \sim \Pr_S[x]$

Target unlabeled data

$$x \sim \Pr_T[x]$$

$$y \sim \Pr_T[y|x]$$

Semi-supervised adaptation

Some target labels

Formalizing Domain Adaptation

Source distribution

 $(x,y) \sim \Pr_S[x,y]$

Target distribution

$$(x,y) \sim \Pr_T[x,y]$$

Source labeled data

Target unlabeled data

$$x \sim \Pr_T[x]$$

 $x \sim \Pr_S[x]$ $y \sim \Pr_S[y|x]$

Semi-supervised adaptation

Not in this talk

A Generalization Bound

S, T: Source and target \mathcal{H} : Hypothesis class n: Sample size \hat{S} : Labeled S sample \hat{T} : Unlabeled T sample h^* : best $h \in \mathcal{H}$

With probability $1 - \delta$, for h the ERM of \hat{S} : $\epsilon_T(h) - \epsilon_T(h^*) \leq$

S, T: Source and target \mathcal{H} : Hypothesis class n: Sample size \hat{S} : Labeled S sample \hat{T} : Unlabeled T sample h^* : best $h \in \mathcal{H}$ Bound from [MMR09]

With probability $1 - \delta$, for h the ERM of \hat{S} :

When good source models go bad

 $\operatorname{disc}_{\mathcal{H}}(S,T) = \max_{\substack{h,h^* \in \mathcal{H}}} |E_S[h(x) \neq h^*(x)] - E_T[h(x) \neq h^*(x)]|$

When good source models go bad

 $\operatorname{disc}_{\mathcal{H}}(S,T) = \max_{h,h^* \in \mathcal{H}} |E_S[h(x) \neq h^*(x)] - E_T[h(x) \neq h^*(x)]|$

Learn pairs of hypotheses to discriminate source from target

Learn pairs of hypotheses to discriminate source from target

Learn pairs of hypotheses to discriminate source from target

Linear Hypothesis Class: $h(x) = \operatorname{sgn} \left(\beta \cdot x\right)$

Induced classes from projections $\beta \cdot \Pi x$ $\Pi = \Pi \Pi$

Linear Hypothesis Class: $h(x) = \operatorname{sgn} \left(\beta \cdot x\right)$

Induced classes from projections $\beta \cdot \Pi x$ $\Pi = \Pi \Pi$

Problems with the Proxy

 Π ignores target-unique features!

1. A computable bound

2. Description of shared representations X

3. Suggestions for future research

Target Generalization Bounds using Discrepancy Distance
 [BBCKPW 2009]
 [Mansour et al. 2009]

 Coupled Subspace Learning [BFK 2010]

Assumption 1: $\mathbb{E}_S[Y|x] = \mathbb{E}_T[Y|x] = \beta \cdot x$

$\beta \cdot x$ can be decomposed as

target-specific can't be estimated from source alone ... yet

Assumption 2:
$$\mathbb{E}_{S}[Y|x] = \beta_{S} \cdot (\Pi_{S}x)$$

 $\mathbb{E}_{T}[Y|x] = \beta_{T} \cdot (\Pi_{T}x)$

- Projections $\Pi_S = \Pi_S \Pi_S \quad \Pi_T = \Pi_T \Pi_T$
- Π_T couples (works well) and -(don't buy)

 $\Pi_S \ \& \ \Pi_T$ learned from unlabeled data

Visualizing Dimensionality Reduction

Visualizing Dimensionality Reduction

Representation Soundness

Representation Soundness

Representation Soundness

Input: Labeled source instances $(x_i, y_i)_{i=1}^n$ Unlabeled target instances x_T

1) Compute Π_S and Π_T (LDA, HMM, CCA) 2) $\left([\hat{\beta}]_{S,T} \right) = \underset{[\beta]_{S,T}}{\operatorname{argmin}} \sum_i \left([\beta]_{S,T} \Pi_T [x_i]_{S,T} - y_i \right)^2$

3) For target instance x, predict $[\beta]_{S,T}\Pi_T x$

Let $\Sigma_T = I$ n = num source instances $\Sigma_{S \to T} = \sum_i (\Pi_T[x_i]_{S,T}) (\Pi_T[x_i]_{S,T})^\top$ $\lambda_j = \text{eigenvalues of } \Sigma_{S \to T}$

Under perfect adaptation, we have

$$\ell_T([\hat{\beta}]_{S,T}) - \ell_T(\beta_T^*) \le$$

$\sum \frac{d}{dt}$ when $S = T^{[T_n]_{S,T}}$ Under perfect adaptation, where $\ell_T([\hat{\beta}]_{S,T}) - \ell_T(\beta_T^*) \leq \left(\frac{\sum j \ \overline{\lambda_j}}{m}\right)$

Computing Π_S and Π_T

Canonical Correlation Analysis (CCA) [Hotelling 1935]

1) Divide feature space into disjoint views

Do **not buy** the Shark portable steamer. The trigger mechanism is **defective**.

2) Find maximally correlating projections $\Pi_{T} = \begin{bmatrix} \Pi_{T}^{1} & 0 \\ 0 & \Pi_{T}^{2} \end{bmatrix}$

Canonical Correlation Analysis (CCA) [Hotelling 1935]

Ando and Zhang (ACL 2005)

Kakade and Foster (COLT 2006)

2) Find maximally correlating projections $\Pi_{T} = \begin{bmatrix} \Pi_{T}^{1} & 0 \\ 0 & \Pi_{T}^{2} \end{bmatrix}$

Square Loss: Kitchen Appliances

Square Loss: Kitchen Appliances

Only label really new target instances

$$\Sigma_{T \to S} = \sum_{x_i \in T} \left(\prod_{S} [x_i]_{S,T} \right) \left(\prod_{S} [x_i]_{S,T} \right)^{\top}$$

Order $x \in \mathcal{X}_T$ by

Piyush Rai et al. (2010)

$$\frac{\|\Pi_T x\|_{\Sigma_T^{-1}}^2}{\|\Pi_T x\|_{\Sigma_T^{-1}}^2}$$

Ratio is

- 1 when S = T
- ∞ when $\Pi_T x$ has no shared part

1. A computable bound

2. Description of shared representations

3. Suggestions for future research

 \checkmark

1. Theory can help us understand domain adaptation better

2. Good theory suggests new directions for future research

- 3. There's still a lot left to do
 - Connecting supervised and unsupervised adaptation
 - Unsupervised adaptation for problems with structure

Collaborators

Shai Ben-David Koby Crammer Dean Foster Sham Kakade

Alex Kulesza Fernando Pereira Jenn Wortman

<u>References</u>

Ben-David et al. <u>A Theory of Learning from Different Domains</u>. Machine Learning 2009. Mansour et al. <u>Domain Adaptation: Learning Bounds and Algorithms</u>. COLT 2009.