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Unsupervised Domain Adaptation
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Target-Specific Features
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Learning Shared Representations
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Shared Representations: A Quick Review
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Task: Named entity recognition
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Task: Part of Speech Tagging m




What do you mean, theory?
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What do you mean, theory?

1

— Test Error
— T rain Error

I I —

tréining data — oo

num features

Classical Learning The6étgst = €train T \/

n



What do you mean, theory?
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Goals for Domain Adaptation Theory

1. A computable (source) sample bound on target err

2. A formal description of empirical phenomena

A Why do shared representations algorithms work?

3. Suggestions for future research



Talk Outline

1. Target Generalization Bounds using Discrepancy L

BBCKPW 2009]
Mansouet al. 2009]

2. Coupled Subspace Learnir~
BEK 20101 1




Formalizing Domain Adaptation

Source distribution Target distribution
(z,y) ~ Prs|z, y] (z,y) ~ Prr(z,y]
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Formalizing Domain Adaptation

Source distribution

(567 y) ~ PIS[ZUv y]

Target distribution

($, y) ~ PIT[LU, y]

Source labeled dataﬁ Targeunlabelediata
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Semisupervised adaptation Some target labels




Formalizing Domain Adaptation

Source distribution Target distribution
(z,y) ~ Prg[z, y] (%, y) ~ Prr(z,y]
Source labeled dataﬁ Targeunlabelediata
r ~ Prglx r ~ Prp|z]
y ~ Prgly|lz

Semisupervised adaptation Not In this talk




A Generalization Bound

S, T: Source and target H: Hypothesis class n: Sample size

FaN ~

S: Labeled S sample 7T': Unlabeled T sample h*: best h € H

With probability 1 — o0, for h the ERM of S:

ET(h) — ET(h*) S



A new adaptation bound

S, T: Source and target H: Hypothesis class n: Sample size

FaN ~

S: Labeled S sample 7T': Unlabeled T sample h*: best h € H
Bound from [MMROQ9]

With probability 1 — o0, for h the ERM of S:

complexity (H)

1



Discrepancy Distance

When good source models go bad
diSCH(S, T) —

max |Bs[h(z) £ b (@)] - Erlh(z) # b*(@)]



/]\ Binary Hypothesis Error Regions
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Discrepancy Distance

When good source models go bad
diSC%(S, T) —

max |Bs[h(z) £ b (@)] - Erlh(z) # b*(@)]

low low high
h

h

h*



Computing Discrepancy Distance

Learn pairs of hypotheses to discrismnstéromiarget
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Computing Discrepancy Distance

Learn pairs of hypotheses to discrisnnsetdromtarget




Hypothesis Classes & Representations

Linear Hypothesis Clih(z) = sgn (5 - x)

Induced classes from projecti§ - I1x I = 1111
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1) Minimize discy(S,T)
@ err,7(B*) — er(8*) small
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A Proxy for the Best Model

Linear Hypothesis Clih(z) = sgn (5 - x)

Induced classes from projecti§ - I1x I = 1111
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Problems with the Proxy

/\

II = ﬁ B ! — source ERM

H?»ww

1) Minimize discr (S, T')
0 2) ésn(B) small

II ignores target-unique features!




Goals

4

2. Description of shared representatio%

1. A computable bound

3. Suggestions for future research )(



Talk Outline

2. Coupled Subspace Learnin~
[BFK 2010]




Assumption: Single Linear Predictor

Assumption 1: Eg|Y|z| =Ep|Y|z| =0 -«

0 - x can be decomposed as

sourcespecific shared targespecific

Bls.1-|xlst + Blst-|xlsr + |Blr.L |11

targetspecificc anot Dbe estil mat ed
source alone. . yet




Visualizing Single Linear Predictor

source

fascinating




Visualizing Single Linear Predictor

fascinating




Visualizing Single Linear Predictor

fascinating




Visualizing Single Linear Predictor

fascinating




Dimensionality Reduction Assumption

Assumption 2: Eg[Y|z] = fs - (Ilsy)
Cr Y|z = Br - T)

Pl"OjeCtiOIlS HS — Hsﬂs HT — HTHT

[I7 couples (works well) and -(don’t buy)

[I¢ & II+ learned from unlabeled data



Visualizing Dimensionality Reduction
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Visualizing Dimensionality Reduction

fascinating




Representation Soundness

......

Lemma: ¥z s - (s[e]s.r) = Br - (Mrfals.r)




Representation Soundness

Lemma: Vz (g - (llg|z|sr) = Br - (IIr|x|s 1)
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g 73
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- works well



