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Dimensionality Reduction for Language

Abstract

Machine learning methods for natural language use features consisting of words or combi-
nations of words to fit statistical models of linguistic phenomena. The discrete input spaces
resulting from these features often have hundreds of thousands or millions of dimensions,
and estimating reliable statistics of these features from limited amounts of training data is
difficult. One technique for alleviating this data sparseness is to induce a low-dimensional
representation of the original feature vector. Learning algorithms can then estimate statis-
tics of the low-dimensional vectors more reliably than the original high-dimensional vectors.

We begin with a brief summary of two standard techniques for dimensionality reduction
of language: latent semantic analysis (Deerwester et al., 1990) and probabilistic latent
semantic analysis (Hofmann, 1999). We then give an overview of three more recent models
for dimensionality reduction of language. Sufficient dimensionality reduction (Globerson
and Tishby, 2003) is an information-theoretic dimensionality reduction technique which
learns a low-rank factorization of the natural parameters of a joint multinomial distribution.
The neural probabilistic language model (Bengio et al., 2003) learns a nonlinear mapping
in order to give a low-dimensional representation for whole phrases simultaneously. Finally
structural learning (Ando and Zhang, 2005) is a dimensionality reduction technique for
semisupervised learning. Given a target prediction task with labeled and unlabeled data,
structural learning finds a low dimensional feature space using the unlabeled data. This
new feature space in turn yields a better target predictor.

We give a unified treatment of the five methods, focusing on their formulation as
optimization problems. The three newer methods use more realistic loss functions and
more flexible parameterizations than the two older ones, and as a result they are able to
capture language phenomena more accurately. Finally, we discuss the disadvantages of
these models and suggest directions for future research.

1. Introduction

Machine learning methods for natural language use features consisting of words or com-
binations of words to fit statistical models of linguistic phenomena. Generative models,
which are the staple of language modeling (Chen and Goodman, 1996) and phrase-structure
parsing (Collins, 1999) estimate a joint probability distribution over words, phrases, or sen-
tences. For a sentence of length 10 and a simple language model that uses only word
level features over a 50,000 word vocabulary, the resulting space of mean-parameterized
multinomial distributions is a 1040-dimensional simplex. Discriminative models for lan-
guage explicitly represent words and word combinations as sparse binary feature vectors.
These models regularly perform well for tagging (Ratnaparkhi, 1996) and chunking (Sha
and Pereira, 2003) and have recently seen success in dependency parsing (McDonald, 2005)
and language modeling (Roark et al., 2004). Parameter vectors for discriminative models
are typically millions of dimensions in size.

Estimating so many parameters from limited data is a difficult task. In practice both
generative and discriminative models employ the technique of backoff, which uses low-
dimensional discrete features such as parts of speech, word prefix and suffix, or semantic role
in place of or in addition to high-dimensional features like words or phrases. Since these low-
dimensional features are specified by the designers of the system, this effectively amounts
to a kind of manual dimensionality reduction. These features are often quite effective, and
part of speech tags in particular are an essential part of most models. Unfortunately, such
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manual low-dimensional features are time-consuming to create. Furthermore, since they
require a human to design, they aren’t adaptable to new situations and domains.

One approach that is potentially less costly is to automatically induce low-dimensional
representations from data. As with manual low-dimensional features, these features are
less sparse, and their statistics are easier to estimate from limited data. They have the
added advantage of requiring minimal human effort. The simplest such features are hard
word clusters (Brown et al., 1992; Emami and Jelinek, 2005). In this framework a word is
mapped to exactly one class. This makes cluster features easy to integrate with existing
generative and discriminative models. Cluster features have several disadvantages, though.
Hard clusters necessarily cut off words from part of their semantic neighborhoods (Schütze,
1993). Finding a hard clustering also requires a difficult combinatorial optimization, often
resulting in models which require more computation time and perform worse.

In this survey we focus on models that pose dimensionality reduction as a continuous
optimization problem. These methods treat dimensionality reduction similarly to other
problems in machine learning for language. In particular they can incorporate features in
a similar way, and they can be analyzed in terms of of the loss functions they minimize.
We begin with the well-known methods of latent semantic analysis (LSA) (Deerwester
et al., 1990) and probabilistic latent semantic analysis (PLSA) (Hofmann, 1999). LSA is an
application of the singular value decomposition to co-occurrence data. PLSA rectifies some
of the problems with LSA by creating a generative model for language as multinomial data.

The majority of the survey is devoted to three new models which offer different per-
spectives and improved performance when compared with LSA and PLSA. Sufficient di-
mensionality reduction (SDR) (Globerson and Tishby, 2003) learns the most informative
real-valued low-dimensional features for describing co-occurrence data. The problem for-
mulation they give leads to an exponential model with factored natural parameters, which
ties SDR to the flexible and widely successful maximum entropy models for language. The
neural probabilistic language model (Bengio et al., 2003) (NPLM) extracts continuous fea-
tures similar to those of SDR but combines them nonlinearly in a neural network. This
allows them to induce joint representations for unobserved histories in a language model,
which in turn gives them significant improvements over the best methods on one of the
most well-studied problems in natural language processing. Ando and Zhang (2005) use
dimensionality reduction on unlabeled data to induce features for semisupervised learning.
Given a target prediction problem with labeled and unlabeled data, Ando and Zhang (2005)
first create many auxiliary problems which are related to the target problem but can be
trained on unlabeled data. They then train auxiliary predictors for each of the auxiliary
problems and learn a low-rank factorization of the parameter space for these predictors.
This low-rank factorization yields a new, low-dimensional feature space for training a tar-
get predictor on the labeled data. Ando and Zhang (2005) report consistent improvements
over state-of-the-art discriminative models using structural learning.

The remained of this paper is structured as follows: In the next section we introduce
our notation and terminology. Section 3 discusses the LSA and PLSA models. The next
three sections address the three new models. Finally section 7 analyzes these models and
suggests further improvements.
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2. Notation and Terminology

We choose to describe latent semantic analysis, probabilistic latent semantic analysis, and
sufficient dimensionality reduction in the context of information retrieval (henceforth also
IR). While these models are potentially more general, Deerwester et al. (1990), Hofmann
(1999), and Globerson and Tishby (2003) all use information retrieval as their main task,
so we focus on IR in this survey. The information retrieval task is characterized by the co-
occurrence of documents and words. In this case we will denote the co-occurrence matrix
as

X ∈ R
V×D ,

where D is the number of documents and V is the vocabulary size. When formulating
dimensionality reduction as a matrix factorization we will write the factors as

X ≈ ΦΨ′ , Φ ∈ R
V×k , Ψ ∈ R

D×k .

Ψ′ indicates the transpose of the matrix Ψ and k is the rank of the low-rank factorization.
For real-valued representations of documents and words, we will write φ(d) and ψ(w), where
φi(d) is the ith element in the vector representation for a document d.

The PLSA, SDR, and neural probabilistic language models all use explicit probability
distributions to model linguistic data. For the information retrieval models, we will write
p(w, d) and p(w|d) to indicate the joint and conditional probabilities of words given docu-
ments. The bag-of-words model, which LSA, PLSA, and SDR all assume can be written
as

p(w1, . . . , wm|d) =

m
∏

i=1

p(wi|d) .

p̃ indicates the empirical probability distribution induced by counting the discrete events in
a training set. For language modeling we will write p (wt|wt−1, . . . , wt−n+1) to indicate the
conditional n-gram probability of word t given the previous n− 1 words.

Finally, in structural learning we will need a notion of a weight vector for a linear
classifier, which we will write in bold as w, and the matrix whose columns are weight
vectors we will write as W. Other notation should be clear in the context in which it
appears.

3. Information Retrieval Models: LSA and PLSA

Methods for dimensionality reduction appeared early in the field of information retrieval
(Baker, 1962; Ossorio, 1966). The central task of information retrieval is to retrieve a
small, relevant set of documents based on a (usually short) query. In order to perform this
task well, it is essential to have an accurate measure of similarity between documents and
queries. The most common model for document-query similarity is the vector space model.
In this model, documents are points in a V -dimensional vector space. Each component
corresponds to a single word, and the value of the component for a document is a function
of the number of times the word has occurred in the document. Queries are treated as
pseudo-documents in the same space, and similarity is measured with the inner product
between the (normalized) document and query vectors. A detailed description of the field
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of information retrieval is well beyond the scope of this survey, but see Salton (1989) for a
good introduction.

Retrieval errors occur either when an irrelevant document is mistakenly retrieved for
a query or when a relevant document is not retrieved. Deerwester et al. (1990) motivate
dimensionality reduction using the language phenomenon of synonymy. A document con-
taining the word “automobile” may be relevant to a query containing the word “car”, even if
the document itself does not contain the word “car”. Latent semantic analysis (Deerwester
et al., 1990) derives its name from the assumption that a corpus has a small latent set of
semantic topics from which words can be chosen. A document consists of words from some
mixture of these topics. Deerwester et al. (1990) also assume that queries are intended to
refer to topics. Now suppose that both “automobile” and “car” have the same topic. If we
can create a good representation of the underlying topics of a corpus, then we can retrieve
a document containing “automobile” from a query containg “car”.

What constitutes such a good representation? For information retrieval in the vector
space model, we want similar documents to have a high scalar product in the new vector
space. LSA and PLSA are linear factorization methods that project documents into a lower-
dimensional space. In general it is impossible to guarantee that a linear matrix factorization
can find a good representation. Under assumptions about the structure of the topics and the
corpus, though, it is possible to show that linear factorizations can find good representations
(Papadimitriou et al., 1998; Ando and Lee, 2001). Furthermore, as we shall see in the next
two subsections, LSA and PLSA can achieve good factorizations in practice.

3.1 Latent Semantic Analysis

Deerwester et al. (1990) observe that if we represent documents using the vector space
model, we can reduce the dimensionality of the document space by computing the singular
value decomposition of the matrix whose columns are document vectors and truncating all
but the top singular values. We will refer to this “term-by-document” matrix as X. Then
the latent semantic analysis is [Φ S Ψ′] = SVD(X, k), where



 X





V ×D

=



 Φ





V × k

[ S ]
k × k

[

Ψ′
]

k ×D

That is, we discard all but the top k singular values of X. Φ and Ψ are orthonormal
matrices, so that the columns of Φ span a latent semantic subspace. Finally, consider the
the example from Deerwester et al. (1990), depicted in figure 1. In this example there are
two topics: human computer interfaces and graph theory, and projecting the documents
onto the top two singular vectors reveals the underlying latent structure.

Once we have performed LSA, we can compute similarities between queries and docu-
ments by first projecting them onto the semantic subspace and then computing the scalar
products. That is, the similarity between a query q and the ith document in the corpus
X[:,i] can be written as

sim(X[:,i],q) = (S1/2Φ′q)′(S1/2Φ′X[:,i])
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(a) Term-by-document matrix X

Terms Documents
u1 u2 u3 g1 g2 g3

human 1 0 0 0 0 0
interface 1 0 1 0 0 0
computer 1 1 0 0 0 0

user 0 1 1 0 0 0
system 0 1 1 0 0 0

response 0 1 0 0 0 0
time 0 1 0 0 0 0
EPS 0 0 1 0 0 0

survey 0 1 0 0 1 0
trees 0 0 0 1 0 1

graph 0 0 0 0 1 1
minors 0 0 0 0 1 1

(b) Scatter plot of u1-u3 (red circles) and
g1-g3 (blue triangles) projected onto the top
two latent semantic basis vectors.

Figure 1: An example of a 2-dimensional latent semantic space from Deerwester et al.
(1990). Three of the documents discuss user interfaces (u1-u3), and three discuss
graph theory (g1-g3).

3.1.1 Latent Semantic Analysis as an Optimization Problem

The singular value decomposition can also be formulated as an optimization problem. We
want to find a low-rank approximation to X, which minimizes the squared loss, or equiva-
lently the Frobenius distance. We follow Srebro (2004) by absorbing the diagonal matrix S
into Φ. We wish to minmize the cost function

J(Φ,Ψ) =
∣

∣

∣

∣X− ΦΨ′
∣

∣

∣

∣

2

F
s.t. Φ ∈ R

V×k, Ψ ∈ R
D×k, Φ′Φ = Λ, Ψ′Ψ = I

with Λ diagonal. Computing partial derivates of J , we have

δJ

δΦ
= 2(X − ΦΨ′)Ψ

δJ

δΨ
= 2(X′ − ΨΦ′)Φ

Now substituting for Φ in the partial with respect to Ψ, we see that solutions are of the
form

ΨΛ = X′XΨ .

That is, the solutions for Ψ have the eigenvectors of X′X as columns. Substituting back into
the partial with respect to Φ we have that the solutions have the corresponding eigenvectors
of XX′ as columns, weighted by their eigenvalues. It remains to show that the global
minimum of Φ,Ψ have only the top eigenvectors as columns. We know that we can write
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X as the product of factors Φ̂Ψ̂′, where the columns of Φ̂ and Ψ̂ are the eigenvectors of
the covariance matrix XX′ and gram matrix X′X respectively. Assume that1 D = V = m.
Finally, without loss of generality, let the first k columns of Φ̂ equal Φ, Φ̂[:,1:k] = Φ, and

similarly for Ψ̂.

∑

d,w

∣

∣

∣

∣X − ΦΨ′
∣

∣

∣

∣

2

F
=

∑

d,w

(

m
∑

α=1

Φ̂d,αΨ̂w,α −

k
∑

α=1

Φd,αΨw,α

)2

=
∣

∣

∣

∣

∣

∣Φ̂[:,(k+1):m]Ψ̂
′
[(k+1):m,:]

∣

∣

∣

∣

∣

∣

2

F

= tr
(

Φ̂[:,(k+1):m]Ψ̂
′
[(k+1):m,:]Ψ̂[:,(k+1):m]Φ̂

′
[(k+1):m,:]

)

= tr
(

Φ̂[:,(k+1):m]Φ̂
′
[(k+1):m,:]

)

=

m
∑

α=k+1

λα

That is, the error is the sum of the eigenvalues whose eigenvectors are not in the solution. So
we see that the minimum must occur where the columns of Φ and Ψ are the top eigenvectors
of the covariance and gram matrices, respectively.

3.1.2 Problems with the Squared Loss

The squared loss can be shown to be equivalent to maximizing the likelihood of the data
under a Gaussian with a low-rank covariance matrix. Several authors have observed that for
discrete data such as text, this Gaussian assumption may be inappropriate (Hofmann, 1999;
Collins et al., 2002). Probabilistic latent semantic analysis and sufficient dimensionality
reduction address this by computing low rank factorizations that maximize the likelihood
of the observed data under a multinomial model.

3.2 Probabilistic Latent Semantic Indexing

Probabilistic latent semantic indexing is an application of the aspect model (Hofmann
and Puzicha, 1998) to modeling terms and documents (Hofmann, 1999). The technique
is “probabilistic” since it is motivated by modeling the conditional multinomial distribution
p(w|d) of words given documents. The PLSA model is a mixture model with the following
form:

p(w|d) =

k
∑

z=1

Φd,zΨw,z, subject to ∀d
∑

z

Φd,z = 1, ∀z
∑

w

Ψw,z = 1 .

Figure 2 gives a graphical model representation for the aspect model. The distributions
p(z|d) are parameterized by the columns of the matrix Φ, and the distributions p(w|z) are
parameterized by the columns of the matrix Ψ. Just as LSA minimizes the Frobenius dis-
tance between the term-by-document matrix X and the factorization ΦΨ′, PLSA minimizes
the Kullback-Leibler divergence between X and a factored matrix UV′, defined as

1. The result holds for rectangular matrices as well, but requires a bit more algebra
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h z w

Figure 2: PLSA graphical model

KL(X,ΦΨ′) =
∑

d,w

Xd,w log
Xd,w

(ΦΨ′)d,w

=
∑

d,w

Xd,w

[

log Xd,w − log
(

ΦΨ′
)

d,w

]

Notice that the first term in the summation above does not depend on the factors Φ,Ψ.
Thus we see that minimizing the KL divergence is the same as maximizing the data likeli-
hood

min
Φ,Ψ

KL(X,ΦΨ′) = max
Φ,Ψ

∑

d,w

Xd,w log
∑

z

Φd,zΨw,z .

Like the SVD minimization problem, the rank constraint makes this minimization problem
non-convex (Srebro, 2004). Unlike the minimizing the Frobenius distance, however, this is
not an eigenvalue problem. Thus we must content ourselves with numerically finding a local
maximum of the log-likelihood. Because of its mixture form, we can give an expectation
maximization algorithm for determining a locally optimal set of parameters Φ,Ψ (Saul
and Pereira, 1997; Hofmann, 1999). The M -step is closed form, and the optimization
typically converges quickly, but see (Salakhutdinov et al., 2003) for more direct gradient-
based optimizers for this model.

3.2.1 The PLSA model in practice

Using the PLSA model for information retrieval turns out to be somewhat intricate. This
is because the PLSA model is not a complete generative model for the space of documents
and words. When we receive a query q, we ideally would compute p(w|q) and compare
this vector to the vectors for each document p(w|d). But we don’t know the paramters for
p(z|q), so we can’t compute the model probabilities p(w|q). Equivalently, there is no row
in our matrix Φ corresponding to the query q. Hofmann (1999) suggests a technique he
calls “folding in”, which re-estimates just the vector p(w|q) to maximize the likelihood of
the observed query words. This entails a short, “one-sided” EM update for every query.
“Folding in” is perhaps the largest drawback to PLSA.

4. Sufficient Dimensionality Reduction

Sufficient dimensionality reduction (Globerson and Tishby, 2003) is a method for finding
a low-rank approximation to the sufficient statistics of an exponential family distribution.
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Globerson and Tishby (2003) give many interpretations of sufficient dimensionality reduc-
tion (SDR), but in this report we will focus on two. The first is that for a joint distribution
p(d,w), SDR finds the real-valued features of a document φ(d) that are most informative
about its words w. The second is that SDR minimizes the Kullback-Leibler divergence be-

tween an empirical co-occurrence matrix X and a factorization exp(ΦΨ′)
Z , where the matrix

exponential function is element-by-element and Z is a normalization constant. Globerson
and Tishby (2003) also discuss a method for addressing generalization error and finite sample
effects by using Cramer-Rao bounds (Cover and Thomas, 1991) on the Fisher information.
We discuss this is subsection 4.2. Finally in subsection 4.3 we give some applications of
SDR and briefly address its relationship to PLSA and LSA.

4.1 Motivation and Interpretation

The goal of sufficient dimensionality reduction is to model co-occurrence data p(d,w), just
as in PLSA and LSA. For each document d there are several features φ(d) which may
be relevant to co-occurring words w. These features might represent topic, style, and so
on. Given an empirical sample X on which we can measure the expected value of these
features, one natural question is “What is the ‘most probable’ distribution that has the
same expected values for each of the features as the empirical distribution?”

Globerson and Tishby (2003) suggest a minimum mutual information distribution based
on the following observation: The information about the random variable w captured by the
expected values of the measured features φ(d) cannot be larger than the mutual information
of any joint distribution p(d,w) consistent with these expected values, since every such joint
distribution can produce those observations. This leads to the following definition:

Definition 1 The information in the measurement of the expected values of φ(d) on p̃(d,w)
is

IM (φ(d), p̃) ≡ min
p(d,w)

I (p(x, y))

s.t. 〈φ(d)〉p(x|y) = 〈φ(d)〉p̃(x|y) , p(d) = p̃(d), p(w) = p̃(w)

p̃ indicates the empirical distribution from our data matrix X. The constraints on the
marginal distributions are easy to estimate from small samples, and as we shall see, they
will lead us to a convenient and familiar form for optimization.

As we said before, the task of SDR is to choose the features φ̂(d) which are most
informative. This leads us to the variational optimization problem

φ̂(d) = argmax
φ(d)

IM (φ(d), p̃(d,w)) .

One key insight when deriving the solution to this optimization problem is to relate the
minimum mutual information distribution to the well-known principle of maximum entropy
(James, 1957). Globerson and Tishby (2003) observe that the distribution with minimum
mutual information subject to marginal constraints also maximizes the joint entropy subject
to the same marginal constraints.

I (p(d,w)) =
∑

d,w

p(d,w) log
p(d,w)

p(d)p(w)
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=
∑

d,w

p(d,w) log p(d,w) −
∑

d

p(d) log p(d) −
∑

d

p(w) log p(w)

=
∑

d,w

p(d,w) log p(d,w) −
∑

d

p̃(d) log p̃(d) −
∑

d

p̃(w) log p̃(w) (from constraints)

Observe that in the final equation, the first summation is the negative entropy. The second
and third summations are constants which don’t depend on p. Now we can proceed to
derive the form of the maximum entropy distribution, subject to the constraints on φ and
the marginals (Cover and Thomas, 1991). We begin by forming the Lagrangian of the
maximum entropy optimization problem

L(p, ψ(w), A(x), B(y)) = −
∑

d,w

p(d,w) log p(d,w) −

∑

w

ψ(w)

(

∑

d

p(d,w)φ(d) −
∑

d

p̃(d,w)φ(d)

)

+ λ0





∑

d,w

p(d,w) − 1



+

∑

d

A(d)

(

∑

w

p(d,w) −
∑

w

p̃(d,w)

)

+
∑

w

B(w)

(

∑

w

p(d,w) −
∑

w

p̃(d,w)

)

.

The maximum entropy optimization problem is concave, so we can write write its uncon-
strained dual (Boyd and Vandenberghe, 2004) as

min
ψ(w),A(x),B(y)

max
p
L(p, ψ(w), A(x), B(y)) .

Taking the functional derviative with respect to p(d,w), we can solve analytically to see
that the optimal p̂(d,w) has the following form

p̂(d,w) =
1

Z
exp

(

∑

i

φi(d)ψi(w) +A(d) +B(w)

)

,

where Z is a normalizing constant2. With this in hand we can substitute for p(d,w) in L,
yielding the dual minimization problem

min
ψ(w),A(d),B(w)

L(ψ(w), A(d), B(w)) =

min
ψ(w),A(d),B(w)

−
∑

d,w

p̂(d,w)

(

∑

i

φi(d)ψi(w) +A(d) +B(w)

)

+
∑

d,w

p̂(d,w) log Z +

∑

d,w

p̂(d,w)

(

∑

i

φi(d)ψi(w) +A(x) +B(y)

)

−
∑

d,w

p̃(d,w)

(

∑

i

φi(d)ψi(w) +A(x) +B(y)

)

.

Canceling and combining terms yields

min
ψ(w),A(x),B(y)

−
∑

d,w

p̃(d,w) log
1

Z
exp

(

∑

i

φi(d)ψi(w) +A(x) +B(y)

)

.

2. In fact we can absorb the normalization into the marginal constraints, but the formulation chosen by
Globerson and Tishby (2003) yields the more familiar exponential form.
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Finally note that the parameters which solve the dual problem above maximize the log-
likelihood. Combining this observation with the original maximization problem over φ(d)
gives us the final optimization problem from Globerson and Tishby (2003):

argmax
φ(d),ψ(w),A(d),B(w)

∑

d,w

p̃(d,w) log
1

Z
exp

(

∑

i

φi(d)ψi(w) +A(d) +B(w)

)

.

Globerson and Tishby (2003) propose an alternating projection algorithm for finding the
likelihood-maximizing parameters φ(d) and ψ(w), but we will not address this algorithm
here. Standard gradient-based techniques can perform 10-15 times faster than the algorithm
outlined in the paper(Globerson, 2006).

4.2 Cramer-Rao Bounds for φ and ψ

One of the goals for dimensionality reduction of language is to provide a compact represen-
tation from a finite sample, which generalizes well to new, unseen samples from the same
distribution. The Cramer-Rao inequality (Cover and Thomas, 1991) provides a lower bound
on the variance of an estimator for the parameter vector θ of a parametric distribution. Let
θ̃(xn) be the estimator of θ on the n-element i.i.d. sample xn. Then the Cramer-Rao bound
for θ̃(xn) is

V ar(θ̃i(x
n)) ≥

1

Ji,i(θ)
, Ji,j(θ) =

〈

−
δ2 log p(x|θ)

δθiδθj

〉

.

J(θ) is the Fisher information matrix for the parameter θ. Computing the Fisher informa-
tion matrix for the SDR parameters φi(d) and ψi(w) reveals the relationships

Ji,j(ψ) = Cov(φ̃(dn)) , Ji,j(φ) = Cov(ψ̃(wn)) .

In particular along the diagonal, we have the following Cramer-Rao bounds:

V ar(φ̃(xn)) ≥
1

V ar(ψ)n
, V ar(ψ̃(yn)) ≥

1

V ar(φ)n
.

That is, we can lower-bound the variance of φ̃(xn), by the sample variance of ψ and vice
versa. For exponential families, we know that the Cramer-Rao bound is tight, and there
are φ and ψ that achieve the Cramer-Rao bounds (Muller-Funk et al., 1989). Of course,
real-world data is not guaranteed to come from an exponential-family distribution.

The Cramer-Rao bounds given by Globerson and Tishby (2003) provide lower bounds
on the variance (and thus the error) of the estimators for φ and ψ. If the lower bound is
high, then we can reasonably despair of finding a good estimator. A lower bound is useful
only when it is pessimistic, though. If the Fisher information is high, then we can tell
nothing about the goodness of our own estimators for φ and ψ.

We might wish to upper bound the error of our estimate of the distribution p̂(d,w) with
respect to the true distribution ptrue(d,w). The most natural notion of error is the L1 error

∑

d,w

|p̂(d,w) − ptrue(d,w)| .

12
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Unfortunately, finding a distribution which is close in the L1 sense for an arbitrary distri-
bution can require samples polynomial in the number of possible states of the underlying
discrete space (Batu et al., 2000). Even for pairwise co-occurrence data, this quantity is
polynomial in DV , which could be quite large.

4.3 Applications of SDR

Globerson and Tishby (2003) report improved information retrieval performance using SDR,
when compared with locally linear embedding (Roweis and Saul, 2000) and LSA. They also
show that using only a few SDR features can achieve almost the same performance as using
the whole feature set for document classification.

4.4 Relationship to PLSA and LSA

Like PLSA and LSA, SDR can be viewed as a matrix factorization technique. Globerson
and Tishby (2003) observe that we can write the optimization as

argmin
Φ,Ψ

KL

(

X,
exp(ΦΨ′)

Z

)

Φ ∈ R
D×k, Ψ ∈ R

m×k

where KL is defined as before and the function exp is element-by-element. Unlike the PLSA
optimization, the matrices Φ and Ψ are unconstrained, but the partition function effectively
couples the elements of the matrix together. Ultimately, though, the most important differ-
ence between PLSA and SDR, both of which model joint multinomial distributions is the
parameterization. Sufficient dimensionality reduction chooses to factorize the natural pa-
rameters of the multinomial, and as we will see in the next section, this affords a flexibility
that can be used to model linguistic relationships beyond pairs of words.

5. The Neural Probabilistic Language Model

PLSA, LSA, and SDR are all models for reducing the dimensionality of pairwise co-occurrence
data. While this can be effective in bag-of-words information retrieval, it ignores an impor-
tant part of natural language semantics. Linguistic meaning is built up from many smaller
pieces, and when modeling language whole phrases are important. The neural probabilistic
language model (NPLM) (Bengio et al., 2003) learns a reduced-dimensional representation
for whole phrases simultaneously. We first introduce n-gram language modeling in section
5.1. Then we discuss the neural probabilistic language model architecture in section 5.2.
Finally, we address the effects of nonlinearity, speedups, and disadvantages to the NPLM
in section 5.4.

5.1 Language Modeling

A statistical language model predicts the probability that a sentence will occur. For many
natural language processing systems which have text as output, such as machine translation
(Brown et al., 1990) and automatic speech recognition (Jelinek, 1997), statistical language
modeling is a central component. More recently techniques from language modeling have
been shown to help in natural language parsing (Collins, 1999) and information retrieval
Zhai and Lafferty (2004).
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A basic first step in many statistical language models is to decompose the probability
of a sentence using the product rule:

p(w1, . . . , wm) = p(w1| < start >)

m
∏

t=2

p(wt|w1, . . . , wt−1) .

Here <start> is a special symbol for the start of a sentence. Given a large corpus of text, one
can estimate the maximum likelihood paramters for each of these conditional probabilities
using relative frequencies:

pRF(wt|w1, . . . , wt−1) =
c(w1, . . . , wt)

c(w1, . . . , wt−1)
,

where c(·) is the count of a joint event.
Once we write the joint probability in this form, we can observe the central problem of

language modeling: data sparseness. As the number of preceding words t becomes large, the
number of possible phrases grows exponentially. For a vocabulary of 100,000 words, there are
1025 possible five word phrases. With a limited amount of data, even grammatical phrases
are unlikely to have been observed before. A common approximation to help alleviate this
problem is the n-gram approximation. Instead of counting phrases of length t, we count
phrases only up to some fixed number n. For example, a trigram (n = 3) language model
gives the probability of a sentence as

p(w1, . . . , wt) = p(w1| < start >)

m
∏

t=2

pRF(wt|wt−2, wt−1) .

While it is easier to collect statistics for lower-order n-gram models, longer contexts give
more precise estimates of the probability of the next word. To deal with this, one often
combines higher and lower-order n-grams with interpolation or backoff (Jelinek, 1997). The
simplest interpolated trigram estimates the probability of the next word as

pLI(wt|wt−2, wt−1) = λ1pRF(wt|wt−2, wt−1)+λ2pRF(wt|wt−1)+λ3pRF(wt) , λ1+λ2+λ3 = 1 .

n-gram language model smoothing is a very well-studied area, and there is no way to
possibly cover every aspect of it in this report, but Chen and Goodman (1996) give an
excellent overview.

Even with the most elaborate backoff schemes, though, n-gram language models do
not capture an important generalization aspect of natural language. That is that certain
words and even whole phrases are reasonable substitutions for one another. For instance, if
we observe the phrase “The brilliant written preliminary examination”, we should
also be able to assign high probability to the phrase “A solid oral qualification test”,
despite the fact that these two phrases share no common words. In the next section we
shall see how the neural probabilistic language model accomplishes this.

5.2 Neural Network Architecture

The neural probabilistic language model models an n-gram conditional probability
p(wt|wt−n+1, . . . , wt−1) in three steps:
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Figure 3: The NPLM architecture (Bengio et al., 2003)

1. Input layer: For each word wt−i in the history, find an embedding φ(wt−i) ∈ R
k.

2. Hidden layer: Compute a combined representation using a sigmoid nonlinearity.

3. Output layer: Choose a probability distribution over next words w conditioned on
the hidden layer.

The NPLM learns the input representations φ(w), as well as the weights of the neural
network simultaneously to maximize likelihood. This is depicted in figure 3.

Beginning with the input representation, we can write the vector-valued function φ as
a concatenated vector

φ(wt−1, . . . , wt−n+1) = [φ(wt−1), . . . , φ(wt−n+1)] .

The hidden layer has the form

h(wt−1, . . . , wt−n+1) = tanh(Cφ(wt−1, . . . , wt−n+1)) , C ∈ R
k(n−1)×h

where C is a weight matrix and tanh is element-by-element. h is the number of units in the
hidden layer. Finally the output layer has the log-linear form

p(wt|wt−n+1, . . . , wt−1) =
1

Z(wt−1, . . . , wt−n+1)
exp(ψ(wt) · h) ,

where Z(wt−1, . . . , wt−n+1) is a normalizing constant for the n-gram history. Bengio et al.
(2003) use stochastic gradient ascent on the log-likelihood to find the (locally) maximizing
parameters of the NPLM.
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Model n clusters h k direct mix PPL

MLP8 3 – 50 30 yes yes 270
MLP10 5 – 100 30 no yes 252
Kneser-Ney 5 – – – – – 321
class-based KN 3 500 – – – – 312

Table 1: Selected results from Bengio et al. (2003)

5.3 Results

Bengio et al. (2003) ran a large battery of tests with the NPLM, and in this section we focus
on an illustrative subset. Language model performance is often measured using perplexity,
the geometric mean of the negative log-likelihood:

PPL = exp





∑

wt−n+1,...,wt

p̃(wt−n+1, . . . , wt) log p(wt|w1, . . . , wt−n+1)



 .

The name “perplexity” indicates that the number is supposed to indicate how perplexed a
model is. This number can also be viewed as the size of a list from which the model must
pick, if it was picking uniformly at random. The best perplexity possible is a perplexity of
1, and the worst is V .

Table 1 gives a small subset of the results from Bengio et al. (2003) The training corpus
is the Brown corpus, a 1 million-word collection of different genres of English. The column n
is the n-gram length. The column “clusters” is the number of clusters for the cluster-based
n-gram baseline. Finally the columns h and k refer to the number of hidden units and
dimensionality of φ, respectively. The “direct” column refers to whether or not there are
direct links between the input layer φ and output layer ψ. These links model a log-linear
relationship between the n-gram history and the predicted word. Indeed, a bigram model
with only linear links has exactly the same parameterization as the SDR model, although
it models a conditional distribution rather than a joint distribution.

The best-performing model is MLP10, which has 100 hidden units, no direct links, and
is mixed with a Kneser-Ney trigram. This model improves over the Kneser-Ney 5-gram
by 21.5%. Bengio et al. (2003) note that interpolating the neural-network models with the
standard trigram models consistently improves perplexity. Furthermore, direct connections
improve the performance of the neural network model alone, but actually decrease per-
formance of the interpolated model. They speculate that the highly nonlinear “MLP10”
neural network model learns a much different function than the interpolated trigram, and
thus they can improve each other’s performance.

5.4 Discussion

The neural probabilistic language model is the first large-scale attempt to represent whole
phrases compactly and simultaneously, and to use this representation for a standard natural
language task. It is still not completely understood how this model represent multi-word
semantics or how applicable it could be in other areas of natural language processing.
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The NPLM as discussed in the previous section is very slow to train, mostly be-
cause for each observed n-gram in training, one must recompute the normalization factor
Z(w−1, . . . , w−(n−1)). Bengio and Sncal (2003) give a 100-fold speedup using importance
sampling, and Morin and Bengio (2005) show that by using a hierarchical decoding mech-
anism one can achieve an exponential speedup over the model discussed in this report.

Finally, it is important to note that language modeling, unlike many areas of natural
language processing, has a potentially infinite amount of training data. The 1 million word
corpus employed by Bengio et al. (2003) is paltry compared to typical n-gram language
models used in large-scale speech and machine translation systems, which are typically
trained on billions of words. With such an immense amount of data available, it is difficult
to make progress in traditional statistical language modeling using new and interesting
models such as the NPLM (Goodman, 2001)

One place which might benefit even more from the ideas of the NPLM is discriminative
language modeling (Roark et al., 2004). Discriminative language models work by reranking
the m-best lists of a first pass speech recognition or machine translation system. Discrimi-
native language modeling has two aspects that make it a particularly appealing use of the
NPLM. First, one needs only to score the best word sequence and does not need to nor-
malize a probability distribution over words, resulting in a potentially very large speedup.
Secondly, unlike traditional language modeling, there is a limited amount of training data
in the form of translation pairs or speech transcriptions.

6. Structural Learning

Structural learning (Ando and Zhang, 2005) is different from the four previous dimen-
sionality reduction techniques in that it is specifically design for semisupervised learning.
The dimensionality reduction training criterion is quite different from the classification loss
which is used to evaluate the representation. Indeed, the dimension reduction itself is a
straightforward application of the singular value decomposition. The fundamental insight
of structural learning is in the design of “auxiliary problems” to guide the choice of sub-
space. We first introduce the motivation for structural learning with shared hypothesis
spaces. In section 6.3.1 we describe the alternating structure optimization algorithm. Sec-
tion 6.4 gives several examples of auxiliary problems. Finally we give results and a brief
discussion in sections 6.5 and 6.6.

6.1 Motivation: Finding good hypothesis spaces

The main task in supervised classification is to find a predictor mapping an input (here we
assume vector) x to an output label y. In most formulations of this problem we select this
predictor from a hypothesis space H. Predictor goodness is evaluated using a loss function
which measures the discrepancy between the output of a labeling predictor f(x) and the
associated correct label y. For a distribution D on pairs (x, y), the optimal predictor in the
hypothesis class H is

f̂ = argmin
f∈H

ED (L (f(x), y)) .

For realistic problems, we do not have the true distribution available to us, but only a finite
sample, which we denote S. One method for choosing f given H and S is the method of
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regularized empirical risk minimization:

f̂ = argmin
f∈H

ES (L (f(x), y)) +R(f) ,

where R(f) is a regularization term. As an example, we might choose as our loss function
a hinge loss where H is the set of linear classifiers and R(f) = ||f ||2 is the squared norm of
the weight vector.

In semisupervised learning, in addition to our labeled sample S, we also are endowed
with a large amount of unlabeled data. The basic idea behind structural learning is to
learn a hypothesis class HΦ using the unlabeled data, where Φ parameterizes the space
of hypothesis classes. Then we choose our predictor from HΦ. If the hypothesis class we
learn is good, then we expect to be able to choose a better function f from our labeled
sample S. The idea to use the unlabeled data to learn a hypothesis space bears a strong
resemblance to the techniques of graph manifold-based semisupervised learning (Belkin and
Niyogi, 2004; Belkin et al., 2005; Zhu et al., 2003, 2005). These techniques construct a
data manifold based on a neighborhood graph of the unlabeled data and use this manifold
to constrain supervised predictors. In practice structural learning most closely resembles
the Laplace regularization work of Belkin et al. (2005). As we shall see, though, structural
learning is formulated differently than any of the data manifold methods. We will return
to this relationship again in section 6.6.

6.2 Shared structure via auxiliary problems

From now on we will refer to the classification problem for which we have labeled data as
the target problem. The key idea in structural learning is the design of auxiliary problems
which meet the following three criteria:

1. Auxiliary problems are closely related to the target problem. For instance, all the
auxiliary problems we discuss here will use the same feature set as the target problem.

2. Auxiliary problems are as different as possible from one another.

3. Auxiliary problems do not require target labeled data to train.

For example, suppose our target problem is part of speech tagging, where each instance
consists of features over word triples, and the task is to give the part of speech tag of the
middle word. The label for “the insightful paper” is “adjective”, the part of speech
tag for “insightful”. One set of appropriate auxiliary problems would be to predict the
identity of the left word from features on the middle and right words. For each instance we
can create one thousand left binary classification problems, word problems, one for each of
the one thousand most frequent left words.

Since auxiliary problems require only unlabeled data to create, we can train highly reli-
able auxiliary predictors from the unlabeled data. Since we required the auxiliary problems
to be diverse, we can say that the auxiliary predictors span the space of predictor functions

(This will be made more precise in the next section). Intuitively, since we designed the
auxiliary problems to be similar to the target problem, any common structure they have is
likely to also be shared by a good target predictor. Thus if we can discover a good predictor

subspace from our auxiliary predictors, this subspace can serve as our hypothesis space.
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6.3 Learning a good hypothesis space

Suppose we create m auxiliary problems, where the ℓth auxiliary problem has nℓ instances.
Let xiℓ ∈ R

V be the ith instance for the ℓth auxiliary problem. Ando and Zhang (2005)
suggest to choose the linear predictor subspace parameterized by the matrix Φ ∈ R

k×V

which minimizes the regularized empirical risk of all the auxiliary problems simultaneously.
Each auxiliary predictor is characterized by two weight vectors: wℓ on the original feature
space and vℓ on the feature space that has been transformed via the mapping Φ.

[

{ŵℓ, v̂ℓ}, Φ̂
]

= argmin
wℓ,vℓ,Φ

m
∑

ℓ=1

(

1

nℓ

nℓ
∑

i=1

L
(

(wℓ + Φ′vℓ)
′xℓi , y

ℓ
i

)

+ λ||wℓ||
2

)

s.t. ΦΦ′ = Ik×k .

Ando and Zhang (2005) call this optimization criterion joint empirical risk minimization.
Note that wℓ is regularized, but vℓ is not. This will play an important role in the derivation
of the the alternating structural optimization algorithm for minimizing the joint empirical
risk. After the derivation of the basic algorithm in section 6.3.1, we discuss the the actual
implementation that Ando and Zhang (2005) use in their experiments in section 6.3.2.

6.3.1 Alternating structural optimization

In order to derive the alternating structural optimization (ASO) algorithm, we first intro-
duce a change of variables. For each auxiliary problem we can write uℓ = wℓ − Φ′vℓ . We
can rewrite the optimization problem as

[

{ûℓ, v̂ℓ}, Φ̂
]

= argmin
uℓ,vℓ,Φ

m
∑

ℓ=1

(

1

nℓ

nℓ
∑

i=1

L
(

u′
ℓx
ℓ
i , y

ℓ
i

)

+ λ
∣

∣

∣

∣uℓ − Φ′vℓ
∣

∣

∣

∣

2

)

s.t. ΦΦ′ = Ik×k,

and at the optimal solution we can recover ûℓ = ŵℓ − Φ′v̂ℓ . Now we come to the basic
formulation of the ASO:

1. Fix (Φ,v) and optimize with respect to u .

2. Fix u and optimize with respect to (Φ,v) .

3. Iterate until convergence.

Note that in step 1, the optimizations for each auxiliary problem decouple, and we can solve
each one separately. These are just standard empirical risk minimization problems, and if
the loss function L is convex, then we can solve them with any minimization technique.
Ando and Zhang (2005) suggest stochastic gradient descent. We focus now on step 2, which
for fixed uℓ = ûℓ yields the optimization problem

[

{v̂ℓ}, Φ̂
]

= argmin
{vℓ},Φ

m
∑

ℓ=1

λ
∣

∣

∣

∣ûℓ − Φ′vℓ
∣

∣

∣

∣

2
s.t. ΦΦ′ = Ik×k.
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Input: labeled data {(xt, yt)
T
t=1},

unlabeled data {xj}

Output: predictor f : X → Y

1. Choose m binary auxiliary problems, pℓ(x), ℓ = 1 . . .m

2. For ℓ = 1 to m

ŵℓ = argmin
w

(

∑

j L(w · xj , pℓ(xj)) + λ||w||2
)

end

3. W = [ŵ1| . . . |ŵm], If Wi,ℓ < 0, set Wi,ℓ = 0.

4. [U D V ′] = SVD(W), Φ = U ′

[1:k,:]

5. Return f , a predictor trained on

{

([

xt

Φxi

]

, yt

)T

t=1

}

Figure 4: ASO algorithm as it is implemented in practice

For fixed Φ, we have a least squares problem for v

min
vℓ

∣

∣

∣

∣ûℓ − Φ′vℓ
∣

∣

∣

∣

2
.

Differentiating with respect to v and setting to 0 reveals

0 = 2Φ
(

ûℓ − Φ′vℓ
)

.

Solving for vℓ we arrive at the solution v̂ℓ = Φû . Finally, we can substitute this back into
the original minimization problem, yielding

Φ̂ = argmin
Φ

m
∑

ℓ=1

λ
∣

∣

∣

∣ûℓ − Φ′Φûℓ
∣

∣

∣

∣

2
s.t. ΦΦ′ = Ik×k.

Let W = [u1, . . . ,um] be the matrix whose columns are the weight vectors u. Now by
following a procedure similar to section 3.1.1, we can see that the solutions are at

ΦΛ = WW′Φ ,

with Λ diagonal. Together with the orthogonality constraint, we know that the columns of
Φ are eigenvectors of the covariance matrix WW′. Finally, by a similar argument to that
of section 3.1.1, we can derive that the minimizing solution occurs at the top eigenvectors.
Thus we can also solve the optimization problem above with a singular value decomposition.

6.3.2 The ASO algorithm in practice

On could run the alternating structural optimization as described in the previous section
to find Φ, but in order to achieve the results that Ando and Zhang (2005) report, we must
make several changes to the form of the algorithm. The final, simpler algorithm is shown
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An example weight matrix W,
where columns are auxiliary pre-
dictor weight vectors and rows
are features. Rows are organized
in blocks by feature type. The
grayed block is th submatrix for
feature type Tk.

predictors
ℓ = 1, . . . ,m

T1

. . .

Tk
. . .

Tτ

[U D V ′] = SVD(WTk
)

θTk
= U ′

[1:h,:]

Figure 5: An illustration of block SVD by type, from Ando and Zhang (2005).

in figure 4. The first change from the ASO algorithm as described in section 6.3.1 is that
there is no alternation. That is, we only need to run one iteration of (each step of) the
optimization. In practice there are far fewer parameters from the weight vectors vℓ on the
transformed feature space than from the weight vectors wℓ on the original space. Thus the
uℓ are unlikely to change significantly in the later iterations. Since the uℓ do not change
significantly, Φ will not change significantly, either.

Running only one iteration allows us to simplify training the auxiliary predictors u. Since
we are only running one iteration, and since we initialize Φ = 0k×V , wℓ = 0, vℓ = 0 ∀ℓ,
we know that uℓ = wℓ. Thus we can simply set the weight vectors by minimizing the
empirical risk with a quadratic regularization.

The second important change to ASO is that when constructing the matrix W whose
columns are the weight vectors wℓ, we set all the negative entries Wi,ℓ = 0 and compute the
SVD of the resulting sparse matrix. This serves two purposes. First, it saves space and time.
For a feature space of size 1 million and 3,000 auxiliary problems, W has 3 billion entries.
Since, as we will see in the next section, most auxiliary problems are of the form “predict
whether an adjacent word is <w>”, they have many more negative instances than positive.
Solving the sparse singular value decomposition that results from setting these entries to
zero provides a significant speedup. Secondly, for many auxiliary problems we really care
about positive instances, but not negative instances. For example, when predicting whether
a word occurs, a positive instance gives us much more information. Thus we can consider
discarding the negative entries as discarding the “noisy” entries of this matrix.

The last extension that makes an important difference is to split features based on
what Ando and Zhang (2005) call “feature type”. Suppose that for a tagging problem, we
have three types of features: left words, middle words, and right words. Ando and Zhang
(2005) point out that these feature types are not homogenous and should not necessarily
be represented with the same projection Φ. They suggest performing an SVD just on
the submatrix corresponding to a specific feature type (shown in figure 5). Then, during
supervised training and testing, the matrices ΦT are applied to the appropriate types
separately, and the features are concatenated into a single feature vector.
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6.4 Examples of auxiliary problems

The choice of auxiliary problems is essential to the performance of structural learning.
Auxiliary problems that closely mimic the target problem can lead to a hypothesis space
that gives significant gains over the original feature space, but auxiliary problems that are
noisy or orthogonal to the target problem give no improvement. Ando and Zhang (2005)
divide auxiliary problems into two basic types: unsupervised and partially supervised. Un-
supervised auxiliary problems involve predicting the identity of one binary feature in an
instance given the values of the other features in the instance. Partially supervised auxil-
iary problems are inspired by co-training (Blum and Mitchell, 1998). To create a partially
supervised auxiliary problem, we first train a classifier on the labeled data. Then we label

the unlabeled data with this classifier and predict the output of this classifier using subsets
of the features. In this section we give examples of auxiliary problems for document classifi-
cation and named entity recognition, and we briefly discuss other applications of structural
learning.

Document classification. Document classification is the task of labeling a document
with its category. In the 20 newsgroups data set, for instance, each document is a news-
group posting and the task is to predict the identity of the newsgroup from the text of
the document. Ando and Zhang (2005) use as features each word weighted by its term
frequency, where the feature values sum to one for each document. Auxiliary problems are
created as follows: Discard all stop words from a standard stop word list. Then randomly
divide the words into two groups. For each document, choose the most frequent word in
that document from each list. Then rank these words by frequency and choose the top 1000
from each group. For each document, we create auxiliary problem instances of the form “Is
the word <w> the most frequent from group 1 in this document?” and similarly
for group 2. Now when predicting words from group 1, we only use words from group 2 as
features. There are a total of 2000 unsupervised binary auxiliary problems. The partially
supervised task is to predict the top k categories output by a supervised classifier. For a

classification task with C labels, there are a total of

(

C

k

)

binary auxiliary problems.

Named entity recognition. Named entity recognition is a labeling and segmentation
problem with many heterogeneous features. Given a document, the task of a named entity
recognizer is to tag each word as beginning a name-B, inside a name-I, or outside a

name-O. In addition, we may be tagging different types of names simultaneously, such as
people, locations, and organizations, giving us B-Per, I-Per (and similar labels for the
other types of named entities). Instances for named entity recognition usually represent the
labels for individual words or adjacent pairs of words (Florian et al., 2003). These individual
instances usually consist of windows centered around a current word or pair and will serve
as instances for auxiliary problem training on the unlabeled data, as well.

For unsupervised auxiliary problems, Ando and Zhang (2005) predict the occurence of
the 1000 most frequent words in the left, middle and right positions. This creates 3000 aux-
iliary problems of the form “Does the word <w> occur as the left (middle/right)

word of this instance?”. They mask all features derived from a word when predicting
that word. For instance, when predicting the left word, they never use features derived
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from the left word. For partially supervised auxiliary problems, Ando and Zhang (2005)
predict the top 2 labels of a supervised classifier.

Ando and Zhang (2005) break the features for named entity recognition into the following
types: current words, left words, right words, bag-of-words in the current, left, and right
syntactic chunks, current, left, and right part of speech tags, and prefix and suffix features.
Each of these types is treated separately for dimension reduction, and they learn a separate
Φ projection for each feature type.

Other tasks. Ando and Zhang (2005) also apply structural learning to handwritten
digit recognition and show that by designing features and auxiliary problems based on
pixel configurations, they can achieve a low error rate in other tasks besides language.
Ando (2006) recently applied structural learning to the task of word sense disambiguation.
She did not use unsupervised auxiliary problems, but she showed improvement from using
partially supervised auxiliary problems as well as multitask training only on the labeled
data.

6.5 Results

Ando and Zhang (2005) report a plethora of results on many different problems. In this
section we briefly summarize them. For document classification, they compare with both
co-training and the manifold semisupervised method of Belkin and Niyogi (2004). The free
parameter for co-training is the number of iterations, and the free parameter for Belkin
and Niyogi (2004) is the number of eigenvectors of the graph Laplacian to use. On the
standard 20 newsgroups and Reuters RCV-1 corpora, they show that structural learning
consistently outperforms both of these methods at the best setting of their free parameters.
For handwritten digit recognition, they again compare with Belkin and Niyogi (2004). With
the smallest amount of labeled data, the manifold semisupervised learning outperforms
structural learning, but structural learning outperforms the manifold learning method at
all other numbers of data.

The most impressive result, however, is performance for the 2003 conference on natural
language learning shared task on named entity recognition. Winners of these competitions
usually employ a great deal of feature engineering in building the best systems. Ando and
Zhang (2005) reports results using a large amount of training data which outperform the
best systems in this competition for both English and German named entity recognition.

6.6 Perspectives on structural learning

Structural learning can be viewed from a variety of perspectives. Ando and Zhang (2005)
focus on multitask learning of a shared hypothesis space. In this section we address a few
other, not necessarily contradictory, views of structural learning.

Structural learning as regularization. In section 6.1, we noted that structural learning
is similar in spirit to the Laplace regularization method of Belkin et al. (2005). In that work
linear predictors are regularized based on their smoothness along the data manifold. This
manifold is approximated using a neighborhood graph on the unlabeled data. Similar to
this work, structural learning can be seen as preferring functions which are smooth in the
reduced “predictor space” derived from the auxiliary predictors. Ando and Zhang (2005)
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Model Parameterization Loss Optimization Applications

LSA Gaussian squared L2 eigenvalue information retrieval

PLSA multinomial KL EM information retrieval
mean

SDR multinomial KL iterative projection information retrieval
natural

NPLM log-linear KL stochastic gradient language modeling
neural network descent

ASO classifier weight joint ERM stochastic gradient classification
space descent + SVD

Table 2: Tabular summary of the five dimensionality reduction methods.

point out that measuring smoothness along the data manifold may not be an appropriate
way to constrain functions for classification, and they suggest that careful design of auxiliary
problems provides a better tailored way to do this.

Two-step dimensionality reduction. It is worthwhile to note that by choosing sig-
nificantly fewer auxiliary problems than the size of the original features O(103) vs O(106),
Ando and Zhang (2005) are already significantly reducing the dimensionality of the hypoth-
esis space. In this respect, structural learning is reducing dimensionality in two steps. The
first step may make the second cleaner or more reliable.

Unsupervised Auxiliary problems model feature covariance. Alternating structural
optimization is motivated from the perspective of joint empirical risk minimization. As
such, the algorithm trains thousands of auxiliary predictors on a large amount of unlabeled
data. But it may be that these predictors are superfluous and that just the co-occurrence
counts alone are sufficient to find a good mapping Φ. Schutze (1998) also used the SVD di-
rectly on co-occurrence data successfully to model word sense disambiguation. Ando (2004)
performed experiments with named entity recognition that used normalized co-occurrence
counts in place of the positive-valued weight vectors from ASO. It would be interesting
to see a comparison of ASO and an algorithm which uses the (normalized) co-occurrence
counts directly.

Theoretical analysis. Ando and Zhang (2005) give a PAC-style theoretical analysis of
structural learning showing that in the limit as the number of auxiliary problems m→ ∞,
the learned hypothesis space will converge uniformly to the optimal hypothesis space .
While this is an interesting analysis in its own right, we omit it here since it sheds limited
light on the question of semisupervised learning. That is, the theory has nothing to say
about the error of the target problem, which is what we are really interested in.

7. Discussion and Future Work

In this section we highlight some similarities and differences among the models in this
report. We also suggest some concrete directions for future work in section 7.1 and more
speculative ideas in section 7.2.
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Table 2 summarizes some of the aspects of each of the models in this report. The
older methods of PLSA and LSA have somewhat unflexible parameterizations. In the
case of LSA, the Gaussian parameterization can lead to decreases in information retrieval
performance (Collins et al., 2002; Hofmann, 1999; Globerson and Tishby, 2003). For PLSA,
parameterizing a joint multinomial by factoring the mean parameters, rather than the
natural parameters, forces a “folding in” optimization to be run at every query.

Suffcient dimensionality reduction parameterizes a joint multinomial using a factoriza-
tion of the natural parameters. Bengio et al. (2003) takes this idea a step further by learning
a nonlinear mapping of separate real-valued embeddings for each discrete element. Finally,
Ando and Zhang (2005) shows that by reducing the dimension of a real vector “classi-
fier space”, rather than a discrete “feature space” can lead to increased performance for
supervised classifiers.

Despite the advantages the more recent models have over LSA, it is important to rec-
ognize the virtues of the singular value decomposition for co-occurrence data. The top
eigenvectors of the covariance matrix are the globally minimal solution for the squared loss,
and there exist prepackaged, fast eigenvalue solvers for large sparse matrices. Although
Globerson and Tishby (2003) and Bengio et al. (2003) both show that the SVD does not
perform as well as a properly motivated multinomial model, we note that their datasets are
much smaller than the data sets that could easily be handled by standard SVD solvers. Ando
and Zhang (2005) do test their method on large data, but they don’t comparre with their
own previous method (Ando, 2004), which performed SVD directly on the co-occurrence
data. It is certainly worthwhile to consider performing SVD on the count data as a first,
approximate technique.

7.1 Future Work on Dimensionality Reduction for Language

Dimensionality reduction of language data has traditionally been applied in the fields of
language modeling and information retrieval. While it has achieved some limited success
on small data sets, large-scale success has been more difficult. This is primarily because the
large amount of available data for those tasks makes sophisticated statistical modeling both
less effective and more time-consuming. Ando and Zhang (2005) showed how dimensionality
reduction for semisupervised learning could be used to improve state-of-the-art discrimina-
tive models on a wide variety of natural language processing tasks. The algorithm they
suggest, alternating structural optimization, is not completely understood, though. Thus
it seems that many immediate successes in dimension reduction for language could come in
the area of semisupervised learning. In this section we briefly outline three new ideas.

New applications for structural learning. Applying structural learning to document
classfication and sequence labeling involves reusing some of the same ideas from dimension-
ality reduction for language modeling and information retrieval. It would be interesting
to see how structural learning applies to problems like parsing, where instances involve at-
tachment decisions, or machine translation, where the notion of a single “instance” is less
clear.

Better co-occurrence representations for structural learning. In section 6.6, we
speculated that structural learning is modeling co-occurrence data and that at least the
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unsupervised auxiliary predictors were superfluous. If this is true, it is certainly worth
investigating more appropriate methods for modeling the feature-feature co-occurrences.
One easy and directly method to try is to apply sufficient dimensionality reduction directly
to the feature-feature co-occurrence data.

Supervised dimensionality reduction for structural learning. Several authors
have recently applied dimension reduction techniques to learning linear projections directly
from labeled data. Goldberger et al. (2005) and Weinberger et al. (2006) learn a linear
mapping to minimize a k-nearest-neighbor-inspired loss functions. As we mentioned in
section 6.6, structural learning can be thought of as a two-step dimension reduction process.
For the alternating structural optimization algorithm, the second step is a singular value
decomposition. But we could learn the Φ to directly minimize the target problems loss on
the labeled training data. This seems to be a fruitful direction for future research.

7.2 Dimension Reduction and Natural Language Semantics

A holy grail of natural language understanding is to accurately model natural language
semantics. One question that has been asked since the first works on dimensionality re-
duction of natural language is whether or not dimensionality reduction captures linguistic
meaning. Indeed, the name “latent semantic analysis” was coined exactly to allude to this
connection. All of the models in this report do seem to capture some notion of lexical se-
mantics. By using dimensionality reduction for word sense disambiguation, Schutze (1998)
and Ando (2006) both indicate that dimensionality reduction does capture some notion of
natural language semantics.

Perhaps the most interesting long-term future goal is to use low-dimensional representa-
tions to model compositional semantics (Heim and Kratzer, 1998). Compositional semantics
describes the way words and phrases combine to form meaning for larger phrases. The neu-
ral probabilistic language model does seem to at least partially model some of this behavior.
Table 1 shows that a nonlinear hidden layer in the neural network can improve language
model performance. But it is difficult to pinpoint what exactly the hidden layer captures.

Other than lower perplexity scores, which are not very enlightening, how might we eval-
uate real-valued semantic representations? It seems likely that combining representations
hierarchically, perhaps in conjunction with syntactic parse trees, may give some answer
to this question (Zettlemoyer and Collins, 2005). But there is some speculation that true
natural language semantics cannot be learned without real-world grounding (Roy, 2005;
Bengio, 2006). While truly representing natural language semantics does seem to be a dis-
tant goal, it is the heart of dimensionality reduction for language. We should not forget it
when designing new models and methods.

8. Conclusion

Data sparseness is a central problem in natural language processing. In information re-
trieval, we need to match a query string with relevant documents. Both queries and docu-
ments are high-dimensional discrete objects, and measuring distances between them can be
unreliable. In language modeling, the task is to estimate the probability of a sentence. Even
short sequences (n-grams) of words can be very high-dimensional, and reliably estimating
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the joint n-gram probability without any low-dimensional structure can be very difficult. In
discriminative learning for parsing and tagging problems, state-of-the-art models typically
use millions of features, but often have only thousands of labeled training instances.

In this survey we reviewed methods that alleviate data sparseness by reducing the dimen-
sionality of linguistic entities. We first reviewed the document-word co-occurence models of
latent semantic analysis and probabilistic latent semantic analysis. LSA computes a low-
rank factorization of the co-occurrence matrix by minimizing the squared loss of the counts.
This leads to a fast and easy-to-solve eigenvalue problem, but the squared loss is equiva-
lent to assuming a Gaussian generating distribution for the co-occurrence matrix. PLSA
attempts to define a more appropriate statistical model by assuming the co-occurrence data
is generated by a multinomial model and learning a factorization of the mean parameters of
the multinomial to minimize the Kullback-Leibler divergence to the empirical distribution.
Hofmann (1999) reports improvements in retrieval performance using PLSA instead of LSA,
but PLSA also has drawbacks. Unlike LSA, PLSA requires an optimization to “fold in”
new query vectors as it processes them.

The main focus of this survey is on three new models for dimensionality reduction of
linguistic co-occurrence data. Sufficient dimensionality reduction, like PLSA, models em-
pirical co-occurrence data as multinomial. Unlike PLSA, though, SDR computes a low rank
factorization of the natural parameters of the multinomial. This exponential family formu-
lation yields a flexible real-valued embedding of words and documents, allowing Globerson
and Tishby (2003) to avoid “folding in” new query objects and yielding an unconstrained
optimization problem.

The neural probabilistic language model uses real-valued embeddings to model multiple
co-occurrences simultaneously. Bengio et al. (2003) compute the probability of an n-gram
by first embedding each of the history words as a real vector. These real vectors are fed as
input to a neural network whose ouput is normalized using a softmax to create a probability
distribution over next words. The resulting embeddings and network parameters are trained
together to minimize the Kullback-Leibler divergence to the empirical distribution. Bengio
et al. (2003) report large gains over traditional n-gram smoothing techniques by using the
NPLM on a small corpus.

Structural learning (Ando and Zhang, 2005) is a dimensionality reduction technique
for semisupervised learning. Given a high-dimensional feature space, as well as labeled
and unlabeled data, structural learning uses the unlabeled data to learn a low-dimensional
projection of the feature space which generalizes well for the target classification task. The
alternating structural optimization algorithm finds a projection of the feature space which
minimizes the joint empirical risk of many auxiliary problems, trained on the unlabeled.
The reduced-dimension feature space obtained by applying this projection is then used to
train a target predictor using the labeled data. Ando and Zhang (2005) report results on
several standard natural language processing tasks demonstrating impressive improvements
over state-of-the-art discriminative classifiers.

The final part of the survey suggests areas for future work in dimensionality reduction
of linguistic co-occurrence data, including combining some of the models in this survey, as
well as applying new work in supervised dimensionality reduction (Goldberger et al., 2005;
Weinberger et al., 2006) to language. We believe dimensionality reduction techniques for
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natural language is one of the most important areas for future research, and many of the
ideas we suggested in section 7.1 are ideas we hope to actively pursue in the near future.

References

R. Ando. Exploiting unannotated corpora for tagging and chunking. In ACL. Short paper,
2004.

R. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks
and unlabeled data. JMLR, 6:1817–1853, 2005.

Rie Kubota Ando. Applying alternating structural optimization to word sense disambigua-
tion. In Conference on Natural Language Learning CoNLL, 2006.

Rie Kubota Ando and Lillian Lee. Iterative residual rescaling: An analysis and general-
ization of LSI. In Proceedings of the 24th Annual ACM Conference on Research and

Development in Information Retrieval, 2001.

Frank Baker. Information retireval based on latent class analysis. Journal of the ACM, 9
(4):512–521, 1962.

T. Batu, L. Fortnow, R. Rubinfeld, W. Smith, and P. White. Testing that distributions are
close. In FOCS, volume 41, pages 259–269, 2000.

Mikhail Belkin and Partha Niyogi. Semisupervised learning on riemannian manifolds. Ma-

chine Learning Special Issue on Clustering, 56:209–239, 2004.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. On manifold regularization. In 10th

International Workshop on Artificial Intelligence and Statistics, 2005.

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language model.
JMLR, 3:1137–1155, 2003. ISSN 1533-7928.

Yoshua Bengio. Personal communication, 2006.

Yoshua Bengio and Jean-Sbastien Sncal. Quick training of probabilistic neural nets by
importance sampling. In Proceedings of the 10th International Workshop on Artificial

Intelligence and Statistics, 2003.

David Blei, Andrew Ng, and Michael Jordan. Latent dirichlet allocation. Journal of Machine

Learning Research, 3:993–1022, 2003.

John Blitzer, Amir Globerson, and Fernando Pereira. Distributed latent variable models
of lexical co-occurrences. In 10th International Workshop on Artificial Intelligence and

Statistics, 2005a.

John Blitzer, Kilian Weinberger, Lawrence Saul, and Fernando Pereira. Hierarchical dis-
tributed representations for statistical language modeling. In Advances in Neural Infor-

mation Processing Systems 18, 2005b.

28



Dimensionality Reduction for Language

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-
training. In Workshop on Computational Learning Theory, 1998. URL
citeseer.ist.psu.edu/blum98combining.html.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

P. Brown, J. Cocke, S. Della Pietra, V. Della Pietra, F. Jelinek, J. Lafferty, R. Mercer, and
P. Roossina. A statistical approach to machine translation. Computational Linguistics,
16:79–85, 1990.

P. F. Brown, V. J. Della Pietra, P. V. deSouza, J. C. Lai, and R. L. Mercer. Class-
based n-gram models of natural language. CL Journal, 18(4):467–479, 1992. URL
citeseer.ist.psu.edu/brown90classbased.html.

S. Chen and J. Goodman. An empirical study of smoothing techniques for language mod-
eling. In Proceedings of ACL 1996, pages 310–318, 1996.

M. Collins. Head-driven Statistical Models for Natural Language Parsing. PhD thesis,
University of Pennsylvania, 1999.

Michael Collins, Sanjoy Dasgupta, and Robert Schapire. A generalization of principal com-
ponent analysis to the exponential family. In Advances in Neural Information Processing

Systems 14, 2002.

Thomas Cover and Joy Thomas. Elements of Information Theory. John Wiley and Sons,
1991.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Fur-
nas, and Richard A. Harshman. Indexing by latent semantic analysis. Jour-

nal of the American Society of Information Science, 41(6):391–407, 1990. URL
citeseer.ist.psu.edu/deerwester90indexing.html.

Ahmed Emami and Fred Jelinek. Random clusterings for language modeling. In Proc. IEEE

Intl. Conf. on Acoustics, Speech, and Signal Processing, 2005.

Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong Zhang. Named entity recognition
through classifier combination. In Conference on Natural Language Learning CoNLL,
2003.

Amir Globerson. Personal communication, 2006.

Amir Globerson and Naftali Tishby. Sufficient dimensionality reduction. Journal of Machine

Learning Research, 3:1307–1321, 2003.

Jacob Goldberger, Sam Roweis, Geoff Hinton, and Ruslan Salakhutdinov. Neighborhood
components analysis. In Advances in Neural Information Processing Systems 18, 2005.

J. Goodman. A bit of progress in language modeling. Technical Report MSR-TR-2001-72,
Microsoft Research, 2001.

29



John Blitzer

Irene Heim and Angelika Kratzer. Semantics in Generative Grammar. Blackwell, Oxford,
1998.

Thomas Hofmann. Probabilistic Latent Semantic Indexing. In Proceedings of the 22nd

Annual ACM Conference on Research and Development in Information Retrieval, pages
50–57, Berkeley, California, August 1999.

Thomas Hofmann and Jan Puzicha. Statistical models for co-occurrence data. Technical
Report 1625, MIT Artificial Intelligence Laboratory, 1998.

Edwin James. Information theory and statistical mechanics. Physical Review, 106:620–630,
1957.

F. Jelinek. Statistical Methods for Speech Recognition. The MIT Press, 1997.

Ryan McDonald. Online large-margin training of dependency parsers. In Proceedings of

ACL 2005, 2005.

F. Morin and Y. Bengio. Hierarchical probabilistic neural network language model. In In

Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics,
2005.

Ulrich Muller-Funk, Friedrich Pukelsheim, and Hermann Witting. On the attainment of the
cramer-rao bound in Lr-differentiable families of distributions. The Annals of Statistics,
17:1742–1748, 1989.

Peter Ossorio. Classification space: A multivariate procedure for automatic document
indexing and retrieval. Multivariate Behavioral Research, pages 479–524, October 1966.

C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala. Latent semantic indexing:
A probabilistic analysis. In Proceedings of the Symposium on Principles of Database

Systems, 1998.

Adwait Ratnaparkhi. A maximum entropy model for part-of-speech tagging.
In Eric Brill and Kenneth Church, editors, Proceedings of the Conference

on Empirical Methods in Natural Language Processing, pages 133–142. Asso-
ciation for Computational Linguistics, Somerset, New Jersey, 1996. URL
citeseer.ist.psu.edu/ratnaparkhi96maximum.html.

Brian Roark, Murat Saraclar, Michael Collins, and Mark Johnson. Discriminative language
modeling with conditional random fields and the perceptron algorithm. In Proceedings of

ACL 2004, 2004.

Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction by locally linear em-
bedding. Science, 290:2323–2326, 2000.

Deb Roy. Grounding words in perception and action: Insights from computational models.
Trends in Cognitive Science, 9:389–396, 2005.

Ruslan Salakhutdinov, Sam Roweis, and Zoubin Ghahramani. Optimization with em and
expectation-conjugate-gradient. In International Conference on Machine Learning, 2003.

30



Dimensionality Reduction for Language

Gerald Salton. Automatic Text Processing: the transfomation, analysis, and retrieval of

information by computer. Addison Wesley Publishion Company, Inc., 1989.

Lawrence Saul and Fernando Pereira. Aggregate and mixed-order markov models for sta-
tistical language modeling. In Empirical Methods in Natural Language Processing, 1997.

Hinrich Schütze. Word space. In Proceedings of NIPS 7, volume 7, 1993.

Hinrich Schutze. Automatic word sense discrimination. Computational Linguistics, 24(1):
97–123, 1998. URL citeseer.ist.psu.edu/schutze98automatic.html.

Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In Proceed-

ings of Human Language Technology-NAACL 2003, Edmonton, Canada, 2003.

Nathan Srebro. Learning with Matrix Factorizations. PhD thesis, Massachusetts Institute
of Technology, Boston, MA, 2004.

S. Wang, S. Wang, R. Greiner, D. Schuurmans, and L. Cheng. Exploiting syntactic, seman-
tic, and lexical regularities in language modeling via directed markov random fields. In
Internation Conference on Machine Learning, 2005.

Kilian Weinberger, John Blitzer, and Lawrence Saul. Distance metric learning for large
margin nearest neighbor classification. In Advances in Neural Information Processing

Systems 19, 2006.

Luke Zettlemoyer and Michael Collins. Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial grammars. In Proceedings of Uncertainty

in Artificial Intelligence, 2005.

C. Zhai and J. Lafferty. A study of smoothing methods for language models applied to
information retrieval. ACM Transactions on Information Systems, 22(2):179–214, 2004.

Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-supervised learning using gaus-
sian fields and harmonic functions. In Twentieth International Conference on Machine

Learning, 2003.

Xiaojin Zhu, Jaz Kandola, Zoubin Ghahramani, and John Lafferty. Nonparametric trans-
forms of graph kernels for semi-supervised learning. In Advances in Neural Information

Processing Systems 18, 2005.

31


