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Abstract
Dimensionality reduction of empirical co-occurrence data is a fundamental problem in unsuper-
vised learning. It is also a well studied problem in statistics known as the analysis of cross-classified
data. One principled approach to this problem is to represent the data in low dimension with min-
imal loss of (mutual) information contained in the original data. In this paper we introduce an
information theoretic nonlinear method for finding such a most informative dimension reduction.
In contrast with previously introduced clustering based approaches, here we extract continuous fea-
ture functions directly from the co-occurrence matrix. In a sense, we automatically extract functions
of the variables that serve as approximate sufficient statistics for a sample of one variable about the
other one. Our method is different from dimensionality reduction methods which are based on
a specific, sometimes arbitrary, metric or embedding. Another interpretation of our method is as
generalized - multi-dimensional - non-linear regression, where rather than fitting one regression
function through two dimensional data, we extract d-regression functions whose expectation val-
ues capture the information among the variables. It thus presents a new learning paradigm that
unifies aspects from both supervised and unsupervised learning. The resulting dimension reduction
can be described by two conjugate d-dimensional differential manifolds that are coupled through
Maximum Entropy I-projections. The Riemannian metrics of these manifolds are determined by
the observed expectation values of our extracted features. Following this geometric interpretation
we present an iterative information projection algorithm for finding such features and prove its
convergence. Our algorithm is similar to the method of “association analysis” in statistics, though
the feature extraction context as well as the information theoretic and geometric interpretation are
new. The algorithm is illustrated by various synthetic co-occurrence data. It is then demonstrated
for text categorization and information retrieval and proves effective in selecting a small set of
features, often improving performance over the original feature set.
Keywords: Feature Extraction, Maximum Entropy, Information Geometry, Mutual Information,
Association Analysis.

1. Introduction

A classic scenario in machine learning and statistics is that of identifying a source distribution from
an i.i.d. sample generated by it. Given a sample xn = [x1, . . . ,xn] generated i.i.d. by an unknown
distribution p(x|y), a basic task in statistical estimation is to infer the value of y from the sample. It
is commonly assumed that the source distribution belongs to some parametric family p(x|y) where
distributions’ “indices”, or “parameters” y ∈Y may take an infinite set of values.1

1. Our unusual notation for the parameters will become clear later on.
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A useful approach to this problem is to extract a small set of statistics or features, which are
functions of the samples and use only their values for inferring the source parameters. Such statistics
are said to be sufficient if they capture all the “relevant information” in the sample about the identity
of y ∈Y . As is well known, under certain regularity assumptions non-trivial sufficient statistics exist
if and only if p(x|y) belongs to an exponential family (Pitman, 1936). Furthermore, the sufficient
statistics can then be written as additive functions of the samples.

When p(x|y) does not belong to an exponential family there still exist statistics which capture
some of the information in the sample about the set Y . In this work we suggest a way of quantifying
this information using information theoretic notions and show how features which maximize this
information can be extracted. Due to its link with the statistical concept of sufficiency, we call our
method Sufficient Dimensionality Reduction (SDR).

An alternative view of this setup is a generalization of the problem of nonlinear regression. In
regression problems, one assumes that the “relevant information” between two variables, X and Y ,
is captured by one unknown function, y = f (x) normally taken as the conditional expectation of x,
〈x〉p(x|y), for each y ∈ Y . However, conditional expectations, which minimize the square-loss, may
not capture all the structure of the variables. There is often more information between X and Y than
can be captured by a single conditional expectation value. Our problem then is to find several such
functions, or regressors, that together capture more of the information and structure of the variables.

As will be shown in this paper, this problem can be cast as finding dimension reduction which
captures the mutual information in a two-way contingency table. It is thus related to a long line
of work in statistics that started by Fisher (1940) with his canonical correlation decomposition,
through the work of Haberman (1978) on Log-Linear models for frequency tables. Our formalism
is most closely related to association models, developed by Goodman and others (see Goodman,
1985, for a thorough review). However, we link these ideas with feature extraction and machine
learning and provide a novel information theoretic and geometric interpretations and algorithms for
such analysis. Furthermore, our variational formulation of the problem enables further extensions
to multivariate dimension reduction and discriminative feature extraction. Our work is also deeply
related to a new information theoretic method for relevant clustering, the information bottleneck
method (Tishby et al., 1999), in which a discrete set of clusters that captures the mutual information
in a contingency table is generated. This method, in turn, is related to Rate-Distortion-Theory (lossy
compression) on the one hand and to channel coding with letter cost on the other hand (see Cover
and Thomas, 1991). Unlike these “classical” coding theorems, in the bottleneck method the relevant
“distortion function”, or the “channel-cost” properties, are induced solely from the co-occurrence
statistics.

Finally, our feature extraction problem turns out to be equivalent to a special matrix factorization
problem, where a data joint distribution is approximated by an exponent of a low rank matrix. As
such it is related to the rich literature on factorization of positive matrices (most recently to Lee
and Seung, 1999, Hofmann, 2001). In this paper we describe an alternating projection algorithm
for solving this special factorization problem, and compare its performance with other linear and
non-linear methods. Our algorithm is based on repeated application of I-projections (Csiszar, 1975)
where the roles of constraints and Lagrange multipliers are alternated repeatedly. Another feature
learning algorithm that is based on a similar entropy Min-Max principle, but in a rather different
setting, appeared recently in a paper by Zhu et al. (1997).

The paper is organized as follows: we first formulate the feature extraction problem as finding
observable - functions of one variable - which are “most informative” with respect to the other vari-
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able. By defining the information of the observations as the minimal mutual information among all
joint distributions consistent with the observations, our problem can be formulated as a Max-Min
Mutual-Information variational principle. We then show that this problem is equivalent to finding a
model of a special exponential form which is closest to the empirical distribution (contingency ta-
ble) in the KL-divergence (or Maximum Likelihood) sense. We next present an iterative algorithm
for solving these problems and prove its convergence to a solution. An interesting information ge-
ometric formulation of our algorithm is then suggested, which provides a covariant formulation of
the extracted features. It also provides interesting sample complexity relations via the Cramer-Rao
inequalities for the selected features. We conclude by demonstrating the performance of the algo-
rithm, first on artificial data and then on a real-life document classification and retrieval problem.

2. Problem Formulation

To illustrate our motivation, consider a die with an unknown outcome distribution. Suppose we are
given the mean outcome of a die roll. What information does it provide about the probability to
obtain 6 in rolling this die? One possible “answer” to this question was suggested by Jaynes (1957)
using his “Maximum Entropy (MaxEnt) principle”.

Denote by X = {1, . . . ,6} the possible outcomes of the die roll, and by ~φ(x) an observation,
feature, or function of X . In the example of the expected outcome of the die, the observation is
~φ(x) = x, the specific outcome. Given the result of n rolls x1, . . .xn, the empirical expected value is
~a = 1

n ∑n
i=1

~φ(xi). MaxEnt argues that the “most probable” outcome distribution p̃(x) is the one with

maximum entropy among all distributions satisfying the observation constraint,
〈

~φ(x)
〉

p̃(x)
= ~a.

This distribution depends, of course, on the actual value of the observed expectation, ~a.

The MaxEnt principle is considered problematic by many since it makes implicit assumptions
about the distribution of the underlying “micro-states”, that are not always justified. In this example
there is in fact a uniform assumption on all the possible sequences of die outcomes that are con-
sistent with the observations. MaxEnt also does not tell us what are the features whose expected
values provide the maximal information about the desired unknown - in this case the probability to
obtain 6. This question is meaningful only given an additional random variable Y which denotes
(parameterizes) a set of possible distributions p(x|y), and one measures feature quality with respect
to this variable. In the die case we can consider the Y parameter as the probability to obtain 6. The
optimal measurement, or observation, in this case is obviously the expected number of times 6 has
occurred, namely, the expectation of the single feature φ(x) = δ(6− x). The interesting question is
what is the general procedure for finding such features.

An important step towards formulating such a procedure is to define the information in a mea-
surement of a given feature vector~φ(x) : X → ℜd , about the relevant variable Y . This information is
also related to the question: how well can one predict the identity of Y from a sample of X generated
by the source distribution p(x|y)?

To answer this, consider the set of all distributions p̃(x,y) which agree with the given expecta-
tions and margin distributions, p(x) and p(y). The assumption that these marginals are known is not
very limiting since they can be reliably estimated even from (relatively) small joint samples. This
assumption also simplifies our analysis and algorithm considerably. Notice that the true distribu-
tion is also in this set (up to possible finite sample errors in the expectations). For every distribution
p̃(x,y) in this set, one can relate the expected prediction error in Y to Shannon’s mutual information,
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I[ p̃(x,y)] = ∑x,y p̃(x,y) log p̃(x,y)
p̃(x) p̃(y) (Cover and Thomas, 1991).2 The measure of mutual information

does not rely on any prediction process, but provides a bound on the error rate using any prediction
scheme for the given distribution.

The information captured about Y precisely by the expected values of the measured features
~φ(x) can not be larger than the mutual information of any joint distribution consistent with these
measurements - since all those distributions can produce these observations. It is thus natural to
take the minimal possible value of I[ p̃(x,y)], over the distributions consistent with the observations
as the measure of the information (about Y) in the observations. Moreover, the distribution which
minimizes this information has the largest possible prediction error of Y among all the distributions
in this set. As we show later, this principle of minimum information coincides with finding the joint
distribution with maximum entropy, subject to the observations and margin constraints, but without
the hidden assumptions of the MaxEnt principle.

Formally, we define IM(~φ(x), p), the information in the measurement of~φ(x) on p(x,y) as:

IM(~φ(x), p) ≡ min
p̃(x,y)∈P (~φ(x)),p)

I[ p̃(x,y)] . (1)

The set P (~φ(x), p) is the set of distributions that satisfy the constraints, defined by

P (~φ(x), p) ≡
{

p̃(x,y) :

〈

~φ(x)
〉

p̃(x|y)
=

〈

~φ(x)
〉

p(x|y)

p̃(x) = p(x)
p̃(y) = p(y)

}

.

The desired most informative features ~φ∗(x) are precisely those whose measurements provide
the maximal information about Y . Namely,

~φ∗(x) = argmax
~φ(x)

IM(~φ(x), p) .

Plugging in the definition of IM we obtain the following Max-Min problem:

~φ∗(x) = arg max
~φ(x)

min
p̃(x,y)∈P (~φ(x),p)

I[ p̃(x,y)] . (2)

Notice that this variational principle does not define a generative statistical model and is in
fact a model independent approach. As we show later, however, the resulting distribution p̃(x,y),
is necessarily of a special exponential form and can be interpreted as a generative model in that
class. There is no need, however, to make any assumption about the validity of such a model for
the empirical data. The data distribution p(x,y) is in fact needed only in order to estimate the

expectations
〈

~φ(x)
〉

p(x|y)
for every y (besides the marginals), given the candidate features ~φ(x). In

practice these expectations are estimated from finite samples and empirical distributions. From a
machine learning view our method thus requires only “statistical queries” on the underlying joint
distribution (Kearns, 1993).

In the next section we show that the problem of finding the optimal functions~φ(x) is dual to the
problem of extracting the optimal features for Y that capture information on the variable X , and in
fact the two problems are solved simultaneously.

2. I[ p̃(x,y)] can also approximate the Bayesian prediction error of p̃(x,y) (see e.g. Slonim and Tishby, 1999).
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3. The Nature of the Solution

We first show that the problem as formulated in Equation 2 is equivalent to the problem of minimiz-
ing the KL divergence between the empirical distribution p(x,y) and a special family of distributions
of an exponential form. To simplify notation, we sometimes omit the suffix of (x,y) from the distri-
butions. Thus p̃t stands for p̃t(x,y) and p for p(x,y)

Minimizing the mutual information in Equation 1 under the linear constraints on the expecta-

tions
〈

~φ(x)
〉

p(x|y)
is equivalent to maximizing the joint entropy:

H[ p̃(x,y)] = −∑
x,y

p̃(x,y) log p̃(x,y)

under these constraints, with the additional requirement that the marginals are not changed, p̃(x) =
p(x) and p̃(y) = p(y). Due to the concavity of the entropy and the convexity of the linear constraints,
there exists a unique maximum entropy distribution (for compact domains of x and y) which has the
exponential form3 (Cover and Thomas, 1991):

p̃∗~φ(x)
(x,y) =

1
Z

exp
(

~φ(x) ·~ψ(y)+A(x)+B(y)
)

, (3)

where Z, the normalization (partition) function is given by:

Z ≡∑
x,y

exp
(

~φ(x) ·~ψ(y)+A(x)+B(y)
)

,

and the functions ~ψ(y),A(x),B(y) are uniquely determined as Lagrange multipliers from the ex-

pectation values
〈

~φ(x)
〉

p(x|y)
and the marginal constraints. It is important to notice that while the

distribution in Equation 3 which maximizes the entropy is unique, there is freedom in the choice of
the functions in the exponent. This freedom is however restricted to linear transformations of the
vector-functions ~ψ(y) and ~φ(x) respectively, as long as the original variables X and Y remain the
same, as we show later on.

The distributions of the form Equation 3 can also be viewed as a distribution class parametrized
by the infinite family of functions Θ = [~ψ(y),~φ(x),A(x),B(y)] (note that we treat ψ and φ symmet-
rically). We henceforth denote this class by PΘ.

The discussion above shows that for every candidate feature ~φ(x), the minimum information
in Equation 2 is the information in the distribution p̃∗

~φ(x)
. As argued before, this is precisely the

information in the measurement of~φ(x) about the variable Y . We now define the set of information
minimizing distributions PΦ ⊂ PΘ, as follows:

PΦ ≡
{

p̃ ∈ PΘ : ∃~φ(x) : p̃ = p̃∗~φ(x)

}

.

It can be easily shown that p̃∗~φ(x)
is the only distribution in PΘ satisfying the constraints in P (~φ(x), p)

(see: Della-Pietra et al. (1997)). Thus, PΦ can alternately be defined as:

PΦ =
{

p̃ ∈ PΘ : ∃~φ(x) : p̃ ∈ P (~φ(x), p)
}

. (4)

3. Note that the unique distribution can actually be on the closure (boundary) of the set of such exponential forms. We
do not address this point here in details.
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Finding the optimal (most informative) features ~φ∗(x) amounts now to finding the distribution
in PΦ which maximizes the information:

p̃∗ = arg max
p̃∈PΦ

I[ p̃] .

The optimal~φ∗(x) will then be the φ parameters of p̃∗, as in Equation 2.
For every p̃ ∈ PΦ one can easily show that

I[ p̃] = I[p]−DKL[p| p̃] , (5)

where DKL[p|q] = ∑x,y p log p
q is the Kullback-Liebler divergence between p and q. Equation 5

has two important consequences. First, it shows that maximizing I[ p̃] for p̃ ∈ PΦ is equivalent to
minimizing DKL[p| p̃] for p̃ ∈ PΦ:

p̃∗ = arg min
p̃∈PΦ

DKL[p| p̃] . (6)

Second, Equation 5 shows that the information in I[ p̃∗] cannot be larger than the information in the
original data (the empirical distribution). This supports the intuition that the model p̃∗ maintains
only properties present in the original distribution that are captured by the selected features ~φ∗(x).

A problem with Equation 6 is that it is a minimization over a subset of PΘ, namely PΦ. The
following proposition shows that this is in fact equivalent to minimizing the same function over
all of PΘ. Namely, the closest distribution to the data in PΘ satisfies the conditional expectation
constraints and thus in PΦ.

Proposition 1

arg min
p̃∈PΦ

DKL[p| p̃] = arg min
p̃∈PΘ

DKL[p| p̃]

Proof: We need to show that the distribution which minimizes the right hand side is in PΦ. Indeed,

by taking the (generally functional) derivative of DKL[p| p̃] w.r.t. the parameters Θ in p̃, one obtains
the following conditions:

∀y
〈

~φ(x)
〉

p̃(x|y)
=

〈

~φ(x)
〉

p(x|y)

∀x 〈~ψ(y)〉 p̃(y|x) = 〈~ψ(y)〉p(y|x)

∀x p̃(x) = p(x)
∀y p̃(y) = p(y) .

(7)

Clearly, this distribution satisfies the constraints in P (~φ(x), p) and from the definition in Equation 4
we conclude that it is in PΦ.

Our problem is thus equivalent to the minimization problem:

p∗ = arg min
p̃∈PΘ

DKL[p| p̃] . (8)

Equation 8 is symmetric with respect to φ and ψ, thus removing the asymmetry between X and Y in
the formulation of Equation 2.
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Notice that this minimization problem can be viewed as a Maximum Likelihood fit to the given
p(x,y) in the class PΘ, known as an association model in the statistical literature (see Goodman,
1985), though the context there is quite different. It is also interesting to write it as a matrix factor-
ization problem (Matrix exponent here is element by element)

P =
1
Z

eΦΨ (9)

where P is the distribution p(x,y), Φ is a |X | × (d + 2) matrix whose (d + 1)th column is ones,
and Ψ is a d + 2 × |Y | matrix whose (d + 2)th row is ones (the vectors A(x),B(y) are the (d +
2)th column of Φ and (d + 1)th row of Ψ). While the vectors A(x),B(y) are clearly related to
the margin distributions p(x) and p(y), it is in general not possible to eliminate them and absorb
them completely in the marginals. We therefore consider the more general form of PΘ. In the
maximum-likelihood formulation of the problem, however, nothing guarantees the quality of this
fit, nor justifies the class PΘ from first principles. We therefore prefer the information theoretic,
model independent, interpretation of our approach. As will be shown, this interpretation provides
us with powerful geometric structure and analogies as well.

4. An Iterative Projection Algorithm

The previous section showed the equivalence of the Max-Min problem, Equation 2 to the KL diver-
gence minimization problem in Equation 8. We now present an iterative algorithm which provably
converges to a local minimum of Equation 8, and hence solves the Max-Min problem as well. This
minimization problem can be solved by a number of optimization tools, such as gradient descent
or such iterative procedures as described by Goodman (1979). In what follows, we demonstrate
some information geometric properties of this optimization procedure, thus constructing a general
framework from which more general convergent algorithms can be generated.

The algorithm is described using the information geometric notion of I-projections (Csiszar,
1975). The I-projection of a distribution q(x) on a set of distributions F is defined as the distribution
in F which minimizes the KL-divergence DKL[p|q]. We denote this distribution by IPR(q,F ):

IPR(q,F ) ≡ arg min
p∈F

DKL[p|q] .

An important property of the I-projection is the, so called, Pythagorean property (see e.g. Cover and
Thomas, 1991, Ch. 12). If the set F is convex, then for every distribution p in F , the following
holds:

DKL[p|q] ≥ DKL[p|IPR(q,F )]+DKL[IPR(q,F )|q] .

We now focus on the case where the set F is determined by expectation values. Given a d
dimensional feature function~φ(x) and a distribution p(x), we consider the set of distributions which
agree with p(x) on the expectation values of~φ(x), and denote it by F (~φ(x), p(x)). Namely,

F (~φ(x), p(x)) ≡
{

p̃(x) :
〈

~φ(x)
〉

p̃(x)
=

〈

~φ(x)
〉

p(x)

}

which is clearly convex due to the linearity of expectations. The I-projection in this case has the
exponential form

IPR(q(x),F (~φ(x), p(x))) =
1

Z∗
q(x)exp (~λ∗ ·~φ(x)) ,
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Input: Joint (empirical) distribution p(x,y)

Output: 2d feature functions: ~ψ(y) and ~φ(x) that result from p̃∗, a solution of the
variational problem Equation 2 and a (local) minimum of Equation 8 and the matrix
factorization of Equation 9 .

Initialization:

• Initialize p̃0(x,y) ∈ PΘ randomly, by choosing random~φ(x),~ψ(y),A(x) and B(y).

Iterate:

• For all x, set:

p̃t+1(y|x) = IPR( p̃t(y|x),F (~ψt(y), p(y|x)))

p̃t+1(x,y) = p̃t+1(y|x)p(x).

• For all y, set:

p̃t+2(x|y) = IPR( p̃t+1(x|y),F (~φt+1(x), p(x|y)))

p̃t+2(x,y) = p̃t+2(x|y)p(y).

• Halt on convergence (when small enough change in p̃t(x,y) is achieved).

Figure 1: The iterative projection algorithm.

where ~λ∗ is a vector of Lagrange multipliers corresponding to the expectation
〈

~φ(x)
〉

p(x)
con-

straints. In addition, for this special exponential form, the Pythagorean inequality is tight and
becomes an equality (Csiszar, 1975). This property is further linked to the notion of “geodesic
lines” on the curved manifold of such distributions.

Before describing our algorithm, some additional notations are needed:

• p̃t(x,y) - the distribution after t iterations.

• ~ψt(y) - the ~ψ(y) functions for p̃t(x,y).

• ~φt+1(x) - the~φ(x) functions for p̃t+1(x,y).

• Θt - the full parameter set for p̃t(x,y).

The iterative projection algorithm is outlined in Figure 1 and described graphically in Figure 2.
I-projections of (exponential) distributions are applied iteratively: Once for fixed ~ψ(y) and their
expectations, and then for fixed~φ(x) and their expectations. Interestingly, during the first projection,
the functions~φ(x) are modified as Lagrange multipliers for 〈~ψ(y)〉 p̃(y|x), and vice-versa in the second
projection. The iterations can thus be viewed as alternating mappings between the two sets of d-
dimensional functions, ~ψ(y) and~φ(x). This is also the direct goal of the variational problem.

We proceed to prove the convergence of the algorithm. We first show that every step reduces
DKL[p(x,y)| p̃t(x,y)].

Proposition 2 DKL[p| p̃t+1] ≤ DKL[p| p̃t ] .

Proof: For every x, the following holds:
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Figure 2: The iterative projection algorithm: The dual roles of the projections that determine ~ψ(y)
and~φ(x) as dual Lagrange multipliers in each iteration. These iterations always converge
and the diagram becomes commutative.

1. p̃t+1(y|x) is the I-projection of p̃t(y|x) on the set F (~ψt(y), p(y|x)) .

2. p(y|x) is also in F (~ψt(y), p(y|x)) .

Using the Pythagorean property, (which is an equality here) we have:

DKL[p(y|x)| p̃t(y|x)] = DKL[p(y|x)| p̃t+1(y|x)]+DKL[ p̃t+1(y|x)| p̃t(y|x)] .

Multiplying by p(x) and summing over all x values, we obtain:

DKL[p| p̃t ]−DKL[p(x)| p̃t(x)] = DKL[p| p̃t+1]+DKL[ p̃t+1| p̃t ]−DKL[p(x)| p̃t(x)] .

where we used p̃t+1(x) = p(x). Elimination of DKL[p(x)| p̃t(x)] from both sides gives:

DKL[p| p̃t ] = DKL[p| p̃t+1]+DKL[ p̃t+1| p̃t ] . (10)

Using the non-negativity of DKL[ p̃t+1| p̃t ] the desired inequality is obtained:

DKL[p| p̃t ] ≥ DKL[p| p̃t+1] .

Note that equality is obtained iff DKL[ p̃t+1| p̃t ] = 0.

An analogous argument proves that:

DKL[p| p̃t+2] ≤ DKL[p| p̃t+1] . (11)

The following easily provable proposition states that the stationary points of the algorithm co-
incide with extremum points of the target function, DKL[p|pΘ]. Its proof uses the properties of the
I-projections in the algorithm and the characterization of the extremum point in Equation 7.
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Proposition 3 If p̃t = p̃t+2 then the corresponding Θt satisfies ∂DKL[p|pΘ ]
∂Θ Θ=Θt = 0 .

In order to see that the algorithm indeed converges to a (generally local) minimum of DKL[p|pΘ],
note that DKL[p| p̃2t ] is a monotonously decreasing bounded series, which therefore converges. Its
difference series (see Equation 10,11),

DKL[p| p̃t ]−DKL[p| p̃t+2] = DKL[ p̃t+1| p̃t ]+DKL[ p̃t+2| p̃t+1] ,

therefore converges to zero. Taking t to infinity, we get p̃t+2 = p̃t+1 = p̃t . Thus, the limit is a
stationary point of the iterations, and from proposition 3 it follows that it is indeed a local minimum
of DKL[p|pΘ]. 4

4.1 Implementation - Partial I-projections

The description of the iterative algorithm assumes the existence of a module which calculates I-
projections on linear (expectation) constraints. Because no general closed form solution for such
a projection is available, it is found by successive iterations which asymptotically converge to the
solution. It is rather straightforward to show that even if the projection algorithm uses only a ”Partial
I-projection” as its IPR module, it still converges to a minimum.

In this work, IPR was implemented using the Generalized Iterative Scaling (GIS) procedure
(see Darroch and Ratcliff, 1972), described in Figure 3.

We now briefly address the computational complexity of our algorithm. The overall time com-
plexity naturally depends on the number of iterations needed till convergence. In the experiments
described in this work we ran the algorithm for up to 100 iterations, which produced satisfactory re-
sults. The I-projection steps, which are performed using GIS, are iterative as well. We used 100-200
GIS iterations for each I−projection with a stopping condition when the ratio between empirical
and model expectations was close enough to 1. Each step of the GIS has linear complexity in |X |d,
where |X | is the size of the X variable and d the number of features. Since in each SDR iteration we
perform I-projections for all X ’s and Y ’s, each iteration performs O(|X ||Y ||d|) operations.

The run-time of the algorithm is most influenced by the implementation of the I-projection
algorithm. GIS is known to be slow to converge , but was used in this work for the simplicity of
the presentation and implementation. Other methods that can speed this calculation by a factor
of 20 have been suggested in the literature (Malouf, 2002) and should be used to handle large
datasets and many features. This is expected to make SDR comparable to SVD based algorithms in
computational complexity.

The parameters were always initialized randomly, but different initial conditions did not affect
the results noticeably. Initializing the parameters using the SVD of the log of p(x,y) generated a
better initial distribution but did not improve the final results, nor convergence time.

5. Information Geometric Interpretation

The iterative algorithm and the exponential form provide us with an elegant information geometric
insight and interpretation of our method. The values of the variable X are mapped into the d-
dimensional differential manifold described by~φ(x), while values of the variable Y are mapped into

4. In order to take this limit, we use the fact that p̃t+1 and p̃t+2 are continuous functions of p̃t because the I projection
is continuous in its parameters.
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Input: Distributions q(x), p(x), d functions ~φ(x)

Output: IPR(q(x),F (~φ(x), p(x)))

Initialize: p0(x) = q(x)

Iterate:

• pt+1(x) = 1
Zt

pt(x)exp ∑d
i=1 φi(x) log

〈φi(x)〉p(x)

〈φi(x)〉pt (x)

• Zt is a normalization constant

Figure 3: The Generalized Iterative Scaling Algorithm.

a d-dimensional manifold described by ~ψ(y). Empirical samples of these variables are mapped into

the same d-dimensional manifolds through the empirical expectations
〈

~φ(x)
〉

p(x|y)
and 〈~ψ(y)〉p(y|x)

respectively. These geometric embeddings, generated by the feature vectors Φ and Ψ, are in fact
curved Riemannian differential manifolds with conjugate local metrics (see Amari and Nagaoka,
2000).

The differential geometric structure of these manifolds is revealed through the normalization
(partition) function of the exponential form, Z(φ;ψ). We note the following relations:

δ logZ
δφ

= 〈~ψ(y)〉p(y|x) (12)

δ logZ
δψ

=
〈

~φ(x)
〉

p(x|y)
(13)

and the second derivatives,

δ2 log Z
δφiδφ j

=
〈

(ψi(y)−〈ψi(y)〉)(ψ j(y)−
〈

ψ j(y)
〉

)
〉

p(y|x)
(14)

δ2 log Z
δψiδψ j

=
〈

(φi(x)−〈φi(x)〉)(φ j(x)−
〈

φ j(x)
〉

)
〉

p(x|y)
. (15)

The last two matrices, which are positive definite, are also known as the Fisher information matrices
for the two sets of parameters Φ and Ψ. Using the Information Geometry formalism of Amari, one
can define the natural coordinates of those manifolds, as well as the geodesic projections, which are
equivalent to the previously defined I-projections. The natural coordinates of the manifold are those
that diagonalize the Fisher matrices locally, i.e. are locally uncorrelated. Moreover, the intrinsic
geometric properties of these manifolds, such as their local curvature and geodesic distances are
invariant with respect to transformations (including nonlinear) of the coordinates φ and ψ. Since
our iterative algorithm can be formulated through covariant projections, its fixed (convergence)
point is also invariant to local coordinate transformations, as long as the above coupling between
the two manifolds is preserved.

This formulation suggests that the SDR reduced statistical description in terms of Φ and Ψ can
be characterized in a way that is invariant to any (1−1) transformation of X and Y . In particular it
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should be invariant to permutations of the rows and columns of the original co-occurrence matrix.
This fact is illustrated in the next section. The information geometric formulation of the algorithm
and its application to the study of geometric invariants requires further analysis.

5.1 Cramer-Rao Bounds and Uncertainty Relations

The special exponential form provides us with an interesting uncertainty relation between the con-
jugate manifolds Ψ and Φ and a way to deal with finite sample effects.

For a general parametric family, p(x|θ), with θ the parameter vector, the Fisher information
matrix,

Ji, j(θ) =

〈(

∂ log p(x|θ)

∂θi

∂ log p(x|θ)

∂θ j

)〉

x

=

〈

−
∂2 log p(x|θ)

∂θi∂θ j

〉

x

,

provides bounds on the covariance matrix of any estimator of the parameter vector from a sample.
Denoting such an estimator from an i.i.d. sample of size n, x(n), by θ̂(xn), the covariance matrix of
the estimators, Cov(θ̂i, θ̂ j) is symmetric definite (if the parameters are linearly independent) and can
be diagonalized together with the Fisher information matrix. In particular, the diagonal elements of
the two matrices satisfy the Cramer-Rao bound,

Ji,i(θ)Var(θ̂i(x
n)) ≥

1
n

.

For our special exponential form this inequality yields a particularly nice uncertainty relation be-
tween finite sample estimates of the feature vectors~φ(x) and ~ψ(y), since for the exponential form
the Fisher information matrices are dual as well,

Ji, j(ψ) = Cov(φ̂(xn))

Ji, j(φ) = Cov(ψ̂(xn))

and the Cramer-Rao inequalities, for the diagonal terms, become

Var(ψ)Var(φ̂(xn)) ≥
1
n

(16)

Var(φ)Var(ψ̂(xn)) ≥
1
n

(17)

as the Fisher information of the φ feature is just the variance of its adjoint ψ variable, and vice versa.
In fact we know that this bound is tight precisely for exponential families, and Equations 16,17 are
equalities.

These intriguing “uncertainty relations” between the conjugate features are strictly true only for
the exponential form p̃∗ and hold only approximately for the true variances. Yet they provide a way
to analyze finite sample fluctuations in the estimates of the features.

The information-geometric structure of the problem allows us to interpret our algorithm as alter-
nating (geodesic) projections between the two Riemannian manifolds of Ψ and Φ. These manifold
allow an invariant formulation of the feature extraction problem through geometric quantities that
do not depend on the choice of local coordinates, namely the specific choice of the functions φ(x)
and ψ(y). Among these invariants, the metric tensors of the manifolds provide us with the way to
define and measure the geodesic projections. On the other hand, since these tensors are just the
Fisher information matrices for the exponential forms, they provide us with bounds on the finite
sample fluctuations of our feature functions.
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6. Applications

The derivation of the SDR features suggests that they should be efficient in identifying a source
distribution Y given a sample X1, . . . ,Xn by using just the empirical expectations 1

n ∑n
i=1

~φ(xi). We
next show how the SDR algorithm can extract non-trivial structure from both artificial data, and
real-life problems.

6.1 Illustrative Problems

In this section, some simple scenarios are presented where regression, either linear or non-linear,
does not extract the information between the variables. SDR is then shown to find the appropriate
regressors and uncover underlying structures in the data.

The construction of the SDR features is based on the assumption that only the knowledge of

the function ~φ(x) and its expected values
〈

~φ(x)
〉

p(x|y)
is required for estimating Y from X . Thus,

assuming the SDR approximation is valid, we can replace p(x,y) with the above two functions.
However, it is clear that one can use the Lagrange multipliers ~ψ(y) instead of the expected values,
since there is a one to one correspondence between these two functions of Y . Finally, because the
problem is symmetric w.r.t X and Y , we are also interested in the regressor averages 〈~ψ(y)〉p(y|x),
which together with ~ψ(y) should provide optimal information about X . Figure 4 depicts these plots
for running SDR with d = 1 for the distribution:

p1(y|x) ∼ N (0,0.2+0.4|sin 2x|)

where N (µ,σ) is a normal distribution with mean µ and standard deviation σ. This distribution
is of an exponential form and has a single sufficient statistic: y2. The SDR single feature ψ(y)
turns out to be nearly identical to y2, up to scaling and translation. The averages 〈ψ(y)〉p(y|x) and
the corresponding φ(x) indeed reveal the periodic structure in the data, and are thus appropriate
regressors for this problem.

In Figure 4, the numerical value of x,y was used for plotting the SDR features. However,
variables often cannot be assigned meaningful numerical values (e.g. terms in documents), and this
approach cannot be used. One can still extract a description invariant representation in these cases
by plotting the points ~φ(x),~ψ(y) in ℜd . This allows the analysis of the functional relation between
the two statistics, without assuming any order on the x or y domains. To illustrate this, consider a
scrambled version of the distribution:

p2(y|x) = N (2πsin x,0.8+0.1x)

where both variables have undergone a random permutation. The scrambled distribution is shown
in Figure 5, along with scatter plots of ~ψ(y) and ~φ(x). These plots illustrate the structure of the
differential manifolds described in the previous section. Since both scatter plots are clearly one
dimensional curves, the correct order of x and y was recovered by traversing the curves, and the
resulting ”unscrambled distribution” is shown in Figure 5. It clearly demonstrates that the original
continuous ordinal scale has been recovered.

Similar procedures can be used for recovering continuous structure from distributions with more
than two statistics. Figure 6 shows the distribution:

p3(y|x) =
1
Zx

e
− (y−sin2πx)2

2(0.8+0.1x)2
− (y−cos2πx)4

(0.8+0.1x)4

1319



GLOBERSON AND TISHBY

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

φ(
x)

x

0 5 10 15 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ψ(y)

y

x

y

−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−1 −0.9 −0.8 −0.7 −0.6

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

<φ(x)>

y
−2 −1 0 1 2

−1

−0.5

0

0.5

1

<
ψ

(y
)>

x

Figure 4: SDR feature extracted for the distribution p1(y|x)∼N (0,0.2+0.4|sin 2x|). Middle: The
distribution p1. Left: The SDR feature for y: ~ψ(y) in blue, and a scaled and translated
y2 in red dots. Bottom: Expected value 〈~ψ(y)〉p(y|x) as a function of x. Top: The SDR

feature for x: ~φ(x). Right: Expected value
〈

~φ(x)
〉

p(x|y)
as a function of y.

x

y φ 2(x
)

φ
1
(x)

ψ
2(y

)

ψ
1
(y) x

y

Figure 5: Reordering X and Y using SDR. From left to right: 1: The scrambled version of p2(y|x) =
N (2πsin x,0.8 + 0.1x) 2: Scatter plot of φ2(x) vs. φ1(x) - the ~φ(x) curved manifold. 3:
Scatter plot of ψ2(y) vs. ψ1(y) - the ~ψ(y) manifold. 4: Reordering of p2 according to the
~φ(x) and ~ψ(y) curves.
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This distribution has four sufficient statistics, namely y,y2,y3,y4. However, SDR can still be used
with d = 2 to represent both X and Y as two dimensional curves, as shown in Figure 6. Although
two statistics do not capture all the information in the distribution, the two curves still reveal the
underlying parameterization. Specifically, the original order in the X and Y domains can be recon-
structed.

x

y φ 2(x
)

φ
1
(x)

ψ
2(y

)

ψ
1
(y)

Figure 6: SDR analysis of p3(x,y). Left The distribution p3(x,y). Middle: Scatter plot for the
manifold~φ(x). Right: Scatter plot for the manifold ~ψ(y).

6.2 Document Classification and Retrieval

The analysis of large databases of documents presents a challenge for machine learning and has
been addressed by many different methods (see Yang and Liu, 1999, for a recent review). Important
applications in this domain include text categorization, information retrieval and document cluster-
ing.

Several works use a probabilistic and information theoretic framework for this analysis (Hof-
mann, 2001, Slonim and Tishby, 2000), whereby documents and terms are considered stochastic
variables. The probability of a term w∈{w1, . . . ,w|W |} appearing in a document doc∈{doc1, . . . ,doc|doc|}
is denoted p(w|doc) and is obtained from the normalized term count vector for this document:

p(w|doc) =
n(doc,w)

∑w n(doc,w)
,

where n(doc,w) is the number of occurrences of term w in document doc. The joint distribution
p(w,doc) is then calculated by multiplying by a document prior p(doc) (e.g. uniform or propor-
tional to document size). This stochastic relationship is then analyzed using an assumed underlying
generative model, e.g. a linear mixture model as in the paper of Hofmann (2001), or a maximum
entropy model as in the paper of Nigam et al. (1999). An optimal model is found, and used for
predicting properties of unseen documents.

In the current work, SDR is used for finding term features~φ(w) such that using their mean
values alone we can infer information about document identity. This approach is nonlinear and thus
significantly differs from linear based approaches such as LSI (Deerwester et al., 1990) or PLSI
(Hofmann, 2001).

Our approach extends the works on maximum entropy in NLP (Berger et al., 1996, Della-Pietra
et al., 1997). In these works, the set of features ~φ(w) was predetermined, or was algorithmically
chosen from a large set of predefined features. SDR does not make assumptions about the feature
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Figure 7: Left: KL between the original distribution and the model, for different d values. Right:
Information in the model. The horizontal line marks the information in the original dis-
tribution.

space (e.g. positivity, range etc.) and performs a completely unsupervised search for the optimal
~φ(w).

6.2.1 DOCUMENT INDEXING USING SDR

The output of the SDR algorithm can be used to represent every document by an index in ℜd .
This transformation reduces the representation of a document from |W |, the number of terms in the
corpus, to d dimensions. Such a dimensionality reduction serves two purposes: First, to extract
relevant information and eliminate noise. Second, low dimensional vectors can allow faster, more
efficient information retrieval, an important feature in real world applications. The resulting indices
can be used for document retrieval or categorization.

A natural index is the expected value of~φ(w) for the given document: φ̂(doc) ≡
〈

~φ(w)
〉

p(w|doc)
.

Since the SDR formulation assumes only knowledge of expected values can be used, it is sensible
to represent a document using this set of values. Alternatively, one can use the set of Lagrange
multipliers ~ψ(doc) for each document in the training data. Given a new document, not in the
training data, one can find~ψ(doc) using a single I-projection of p(w|doc) on the linear constraints
imposed by~φ(w).

6.2.2 DOCUMENT CLASSIFICATION APPLICATION

We used the 20Newsgroups database (Lang, 1995) to test how SDR can generate small features sets
for document classification.

We start with an illustrative example, which shows how SDR features capture information
about document content. We chose two different newsgroups with subjects : ”alt.atheism” and
”comp.graphics”, and preselected 500 terms and 500 documents per subject, using the informa-
tion gain criterion (Yang and Liu, 1999). The projection algorithm was then run on the resulting
p(w,doc) matrix, for values of d = 1,2,4,8, . . . ,256. Figure 7 shows DKL[p|p∗], I[p∗] as a function
of d. It can be seen that as larger values of d are used, the original distribution is approached in the
KL sense and in the mutual information sense (as in Equation 5).

To gain insight into the nature of the SDR features, we look at~φ(w) obtained for the d = 1 case.
A histogram of the values of ~φ(w) is shown in Figure 8. It can be seen that the values are roughly
symmetrical about 0. Figure 9 shows the 5 terms with the highest and lowest ~φ(w) values. Clearly,
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Figure 9: Terms with high (right) and low (left) φ1(w) values

the terms with high ~φ(w) correspond to the ”comp.graphics” subject, and the ones with low ~φ(w)
correspond to ”alt.atheism”. This single feature thus maps the terms into a continuous scale through
which it assigns positive weights to one class, negative weights to the other, and negligible weights
to terms which are possibly irrelevant to the classes.

We next performed classification on eight different pairs of newsgroups. The φ̂(doc) index
was used as input to a support vector machine (SVM-Light Joachims, 1998), which was trained
to classify documents according to their subjects. Baseline results were obtained by running the
SVM classifier on the original p(w|doc) vectors. The training and testing sets consisted of 500
documents per subject, and 500 terms. We experimented with values d = 1,2,4,8, . . . ,256,500
to test how well we can classify with relatively few features. Figure 10 shows the fraction of the
baseline performance that can be achieved using a given number of features. It can be seen that even
when using only four features, 98% of the baseline performance can be achieved.

Thus, classification based on the SDR index achieves performance comparable to that of the
baseline, even though it uses significantly less features (compared to the 500 features used by the
baseline classifier). Importantly, the features were obtained in a wholly unsupervised manner, and
have still discovered the document properties relevant for classification.

6.2.3 INFORMATION RETRIEVAL APPLICATION

Automated information retrieval is commonly done by converting both documents and queries into
a vector representation, and then measuring their similarity using the cosine of the angle between
these vectors (Deerwester et al., 1990).

SDR offers a natural procedure for converting documents into d dimensional indices, namely
φ̂(doc). Retrieval can then be performed using the standard cosine similarity measure, although this
is not necessarily the optimal procedure.
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Figure 10: Fraction of baseline performance achieved by using a given number of SDR features.
Results are averaged over eight newsgroup pairs.

The following databases were used to test information retrieval: MED(1033 documents, 5381
terms), CRAN (1400 documents, 4612 terms) and CISI (1460 documents, 5609 terms).5 For each
database, precision was calculated as a function of recall at levels 0.1,0.2, . . . ,0.9. The performance
was then summarized as the mean precision over these 9 recall levels (see Hofmann, 2001).

We compared the performance of the SDR based indices with that of indices generated using
the following algorithms:

• RAW-TF: Uses the original normalized term count vector p(w|doc) as an index. The dimen-
sion of the index is the number of terms.

• Latent Semantic Indexing (LSI): LSI is, like SDR, a dimensionality reduction mechanism,
which uses the Singular Value Decomposition (SVD) to obtain a low rank approximation of
the term-frequency matrix: p(doc,w) ≈USV , where U is a |doc|×d matrix , S is d×d and V
is d×|w|. A new document vector~x is then represented by the d dimensional vector S−1V~x.

• Log LSI: Since SDR is related to performing a low rank approximation of the log of p(w,doc),
we also tried to perform LSI where the input matrix is log p(w,doc). In order to avoid taking
a log of zero, we thresholded the matrix to 10−7.

• Locally Linear Embedding (LLE) (Roweis and Saul, 2000): LLE performs a non linear ap-
proximation of the manifold on which the vectors p(w|doc) lie. It maps these vectors into
a d dimensional space, while preserving the neighborhood structure in the original, high-
dimensional, space. LLE has been shown to perform well for image, as well as document
data. For the experiments described here, we followed the procedure used by Roweis and
Saul (2000),6 using the dot product between document vectors as the neighborhood metric,
and taking 10 nearest neighbors (other values were experimented with, but 10 gave optimal
performance). The version of LLE used here cannot index new vectors (although such an

5. The list of terms used can be obtained from www.cs.utk.edu/∼lsi/corpora.html
6. Code available from http://www.cs.toronto.edu/∼roweis/lle/code.html, with minor changes.
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Figure 11: Mean precision as a function of index dimension for four indexing algorithms (SDR in
circles, LSI in triangles, LogLSI in diamonds and LLE in squares), and three databases
(from left to right: MED,CRAN,CISI). Horizontal line is the mean precision of the
RAW-TF algorithm.

Raw TF LSI LLE SDR

MED 47.18 (5381) 54.25 (80) 58.25(32) 58.1 (96)

CRAN 35.63 (4612) 28.95 (128) 36.13(128) 40.28 (112)

CISI 13.54 (5609) 13.1 (128) 13.79(64) 18.72 (80)

Table 1: Mean precision results for information retrieval for several databases and different index-
ing algorithms. Numbers in brackets are the number of features for which the optimal
performance is obtained

extension was given by Roweis et al., 2001), so document and query data were indexed si-
multaneously. Note that this gives LLE an advantage over the other indexing algorithms,
since the test data (i.e. the queries) is used in the training procedure.

For each of the databases, indexing dimensions of d = 8,16,32,48, . . . ,128 were used. Figure 11
shows the mean precision as a function of index dimension for the four indexing algorithms. Table
1 gives the peak performance on each of the databases for each of the algorithms (LogLSI is not in-
cluded since it was inferior to LSI). It can be seen that SDR performs uniformly better than the other
algorithms for most index sizes. Moreover, SDR achieves high performance for a small number of
features, where other methods perform poorly. This suggests that SDR succeeds at capturing the
low dimensional manifold on which the documents reside. The fact that LogLSI performs poorly
shows that SDR is not equivalent to an SVD low rank approximation of log p(w,doc).

7. Discussion

The current work suggests an information theoretic feature extraction mechanism, where the fea-
tures are used for calculating means over empirical samples, and these means are in turn used for
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inferring an unknown “variable” or other “relevant property” of the statistical data. The main goal
of this procedure is to reveal possible continuous low-dimensional underlying structure that can
“explain” the dependencies among the variables. Yet our applications suggest that the extracted
continuous features can be used successfully for prediction of the relevant variable. An interesting
question is in what sense is this resulting prediction close to optimal? In other words, how well can
one infer using the extracted features compared the optimal inference procedure? The prediction
error of an optimal procedure is the Bayes error (Devroye et al., 1996). When the true underlying
distribution is of an exponential form with the correct dimensionality SDR is equivalent to max-
imum likelihood estimation of its parameters/features, and as such is consistent (Devroye et al.,
1996) and achieves asymptotically the optimal error in this case.

In the more interesting case, where the source distribution is not in the special exponential
form, SDR should be interpreted as an induction principle, similar - but better motivated - than the
maximum entropy principle. In fact it solves an inverse problem to that of MaxEnt, by finding the
optimal set of constraints - or observables - that capture the mutual information in the empirical
joint distribution. It is obvious that methods that exploit prior knowledge about the true distribution
can do better in such cases. However, assuming that only empirical conditional expectations of
given single variable functions are known about the source joint distribution (similar to “statistical
queries” in machine learning, see Kearns, 1993) our Max-Min mutual information principle is a
most reasonable induction method.

We briefly address several other important issues that our procedure raises.

7.1 Information in Individual Features

The low rank decomposition calculated using SVD suggests a clear ordering on the features using
their associated singular values. Moreover, the SVD solutions are nested (i.e. the optimal features
for d = 2 are a subset of those for d = 3). Due to its non-linear nature, the SDR solution is not
necessarily nested (this is also true for solutions of linear based methods like those in Hofmann,
2001, Lee and Seung, 1999).

However, given a set of optimal SDR features ~φ∗(x), the information in a single feature can be
quantified in several ways. The simplest measure is IM(φ∗i (x)) (as defined in Equation 1), which
reflects the information obtained when measuring only φ∗

i (x). Another measure is IM(~φ∗(x))−
IM(φ∗1(x), . . . ,φ∗

i−1(x),φ∗
i+1(x),φ∗

d(x)) which is the information lost as a result of not measuring
φ∗i (x). The two measures reflect different properties of the feature, and further research is required to
test their usefulness, for example in assigning confidence to the measurement of different features.

7.2 Finite Samples

The basic assumption behind our problem formulation is that we have access to the true expectation
values 〈~ψ(y)〉 and 〈~φ(x)〉. These can be estimated uniformly well from a finite sample under the
standard uniform convergence conditions. In other words, standard learning theoretical techniques
can give us the sample complexity bounds, given the dimensions of X and Y and the reduced di-
mension d. For continuous X and Y further assumptions must be made, such as the fat-shattering
dimension of the features.

When the source distribution is close to the exponential form - most of the mutual information
is captured by the features - the Cramer-Rao bounds provide a much simpler method for analyzing
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the finite sample effects, as we discussed in section 5.1. We can then bound the prediction errors in
terms of the empirical covariance matrices of the obtained features.

7.3 Uniqueness of the Solution

The optimal features are not unique in the following sense: since only the dot-product ~φ(x) ·~ψ(y)
appears in the distribution p̃(x,y), any invertible matrix R can be applied such that ~φ(x)R−1 and
R~ψ(y) are equivalent to ~φ(x) and ~ψ(y). Note, however, that although the resulting functions ~ψ(y)
and ~φ(x) may depend on the initial point of the iterations, the information extracted does not (for
the same optimum).

One can remove this ambiguity by orthogonalization and scaling of the feature functions, for ex-
ample by applying Singular Value Decomposition (SVD) to log p̃(x,y) (see Becker and Clogg, 1989,
for additional normalization schemes). Another is to de-correlate the ~φ(x) using an appropriate lin-
ear transformation. Notice, however, that our procedure is very different from direct application of
SVD to log p(x,y). These two coincide only when the original joint distribution is already of the
exponential form of Equation 3. In all other cases SVD based approximations (LSI included) will
not preserve information as well as our features at the same dimension reduction.

7.4 Information Theoretic Interpretation

Our information MaxMin principle is close in its formal structure to the problem of channel capacity
with some channel uncertainty (see e.g. Lapidoth and Narayan, 1998). This suggests the interesting
interpretation for the features as channel characteristics. If the channel only enables the reliable
transmission of d expected values, then our ~ψ(y) exploit this channel in an optimal way. The
channel decoder of this case is provided by the vector~φ(x) and the decoding is performed through a
dot-product of these two vectors. This intriguing interpretation of our algorithm obviously requires
further analysis.

7.5 Relations to Other Methods

Dimension reduction and clustering algorithms have become a fundamental component in unsu-
pervised large scale data analysis. SDR is a dimension reduction method in that it reduces the
description of the distribution p(x,y) from |X ||Y | components to (d +1)(|X |+ |Y |). There is a large
family of algorithms with a similar purpose, which are based on a linear factorization of p(x,y).
For example Hofmann (2001) and Lee and Seung (1999) suggest finding positive matrices Q of size
|X |×d and R of size d ×|Y | such that p = QR. Their procedure relies on the fact that the rows (or
columns) of p lie on a d dimensional plane. The SVD based LSI method (Deerwester et al., 1990)
also performs a linear factorization of p, but it is not required to be positive.

Our approach is equivalent to approximating p (in the KL-divergence sense) by 1
Z eQR where

Q and R are matrices of size |X |× (d + 2) and (d + 2)×|Y | respectively. Since the exponent can

be written as eQR = I + QR + (QR)2

2! + . . ., (matrix powers are element by element) the above linear
methods can be said to approximate its first two terms. However, it is important to note that the two
methods (linear and exponential) assume different models of the data, and their success or failure is
application dependent. The information retrieval experiments in the current work have shown that
even in document analysis, where linear methods have been successful, exponential factorization
can improve performance.
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An information theoretic approach to feature selection is also used by Zhu et al. (1997), in the
context of texture modeling in vision. Their approach is similar to ours in that they arrive at a
min-max entropy formulation. However, in contradistinction with the current work, they assume
a specific underlying parametric model, and also define a finite feature set from which features
are chosen using a greedy procedure. In this sense, their algorithm is more similar to the feature
selection mechanism of Della-Pietra et al. (1997). There are also several works which search for
approximate sufficient statistics (see Wolf and George, 2000, Geiger et al., 1998) by directly calcu-
lating the information between the statistic and the parameter of interest. This results in a formalism
different from ours, and usually necessitates some modeling assumptions to make computation fea-
sible.

Since SDR finds a mapping from the X and Y variables into d dimensional space, it can be
considered an embedding algorithm. As such, it is related to non-linear embedding algorithms,
notably multi-dimensional scaling (Cox and Cox, 1994), Locally Linear Embedding (Roweis and
Saul, 2000) and IsoMAP (Tenenbaum et al., 2000). Such algorithms try to preserve properties
of points in high dimensional space (e.g. distance, neighborhood structure) in the embedded space.
SDR is not formulated in such a way, but rather requires that the original points can be reconstructed
optimally from the embedded points, where the quality of reconstruction is measured using the KL-
divergence.

7.5.1 RELATIONS TO THE INFORMATION BOTTLENECK

A closely related idea is the Information Bottleneck (IB) Method (originated in Tishby et al., 1999)
which aims at a clustering of the rows of p(x,y) that preserves information. In a well defined sense,
the IB method can be considered as a special case of SDR, when the features functions are restricted
to a finite set of values that correspond to the clusters. However, clustering may not be the correct
answer for many problems where the relationship between the variables comes from some hidden
low dimensional continuous structures. In such cases clustering tends to quantize the data in a rather
arbitrary way, while low dimensional features are simpler and easier for interpretation.

On the other hand, the motivation behind SDR is essentially the same as that of the IB, to find
low-dimensional/complexity representations of one variable that preserve the mutual information
about another variable. The algorithm in that case is however quite different and it solves in fact a
more symmetric problem - find low dimensional representations of both variables (X and Y ) such
that the mutual information between them is captured as good as possible. This is closely related
to the symmetric version of the information bottleneck that is discussed by Friedman et al. (2001).
As in the IB, the quality of the procedure can be described in terms of the “information curve” - the
fraction of the mutual information that can be captured as a function of the reduced dimension. An
interesting open question, at this point, is if we can extend the SDR algorithm to deal with different
dimensions simultaneously. One would like to move continuously through more and more complex
representations, as done in the IB through a mutual information constraint on the complexity of
the representation. There are good reasons to believe that such an extension, that may “soften” the
notion of the dimension, is possible also with SDR.

8. Conclusions and Further Research

We have presented a feature extraction method based on an information theoretic account of the
notion of measurement. Our proposed method is a new dimensionality reduction technique. It is
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nonlinear, and aims directly at preserving mutual information in a given empirical co-occurrence
matrix. This is achieved through an information variation principle that enables us to calculate
simultaneously informative feature functions for both random variables. In addition we obtain an
exponential model approximation to the given data which has precisely these features as dual sets
of sufficient statistics. We described an alternating projection algorithm for finding these features
and proved its convergence to a (local) optimum. This is in fact an algorithm for extracting optimal
sets of constraints from statistical data.

Our experimental results show that our method performs well on language related tasks, and
does better than other linear models, which have been used extensively in the past. Performance is
enhanced both in using smaller feature sets, and in obtaining better accuracy. Initial experiments
on image data also show promising results. Taken together, these results suggest that the underly-
ing structure of non-negative data may often be captured better by SDR than using linear mixture
models.

One immediate extension of our work is to the multivariate case. The natural measure of infor-
mation in this case is the multi-information (see Friedman et al., 2001). One can then generalize
the bivariate SDR optimization principle, thus defining an optimal measurement on a large set of
variables.
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