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Abstract

This work investigates supervised word align-
ment methods that exploit inversion transduc-
tion grammar (ITG) constraints. We con-
sider maximum margin and conditional like-
lihood objectives, including the presentation
of a new normal form grammar for canoni-
calizing derivations. Even for non-ITG sen-
tence pairs, we show that it is possible learn
ITG alignment models by simple relaxations
of structured discriminative learning objec-
tives. For efficiency, we describe a set of prun-
ing techniques that together allow us to align
sentences two orders of magnitude faster than
naive bitext CKY parsing. Finally, we intro-
duce many-to-one block alignment features,
which significantly improve our ITG models.
Altogether, our method results in the best re-
ported AER numbers for Chinese-English and
a performance improvement of 1.1 BLEU over
GIZA++ alignments.

1 Introduction

Inversion transduction grammar (ITG) con-
straints (Wu, 1997) provide coherent structural
constraints on the relationship between a sentence
and its translation. ITG has been extensively
explored in unsupervised statistical word align-
ment (Zhang and Gildea, 2005; Cherry and
Lin, 2007a; Zhang et al., 2008) and machine
translation decoding (Cherry and Lin, 2007b;
Petrov et al., 2008). In this work, we investigate
large-scale, discriminative ITG word alignment.

Past work on discriminative word alignment
has focused on the family of at-most-one-to-one
matchings (Melamed, 2000; Taskar et al., 2005;
Moore et al., 2006). An exception to this is the
work of Cherry and Lin (2006), who discrim-
inatively trained one-to-one ITG models, albeit
with limited feature sets. As they found, ITG

approaches offer several advantages over general
matchings. First, the additional structural con-
straint can result in superior alignments. We con-
firm and extend this result, showing that one-to-
one ITG models can perform as well as, or better
than, general one-to-one matching models, either
using heuristic weights or using rich, learned fea-
tures.

A second advantage of ITG approaches is that
they admit a range of training options. As with
general one-to-one matchings, we can optimize
margin-based objectives. However, unlike with
general matchings, we can also efficiently com-
pute expectations over the set of ITG derivations,
enabling the training of conditional likelihood
models. A major challenge in both cases is that
our training alignments are often not one-to-one
ITG alignments. Under such conditions, directly
training to maximize margin is unstable, and train-
ing to maximize likelihood is ill-defined, since the
target alignment derivations don’t exist in our hy-
pothesis class. We show how to adapt both margin
and likelihood objectives to learn good ITG align-
ers.

In the case of likelihood training, two innova-
tions are presented. The simple, two-rule ITG
grammar exponentially over-counts certain align-
ment structures relative to others. Because of this,
Wu (1997) and Zens and Ney (2003) introduced a
normal form ITG which avoids this over-counting.
We extend this normal form to null productions
and give the first extensive empirical comparison
of simple and normal form ITGs, for posterior de-
coding under our likelihood models. Additionally,
we show how to deal with training instances where
the gold alignments are outside of the hypothesis
class by instead optimizing the likelihood of a set
of minimum-loss alignments.

Perhaps the greatest advantage of ITG mod-
els is that they straightforwardly permit block-



structured alignments (i.e. phrases), which gen-
eral matchings cannot efficiently do. The need for
block alignments is especially acute in Chinese-
English data, where oracle AERs drop from 10.2
without blocks to around 1.2 with them. Indeed,
blocks are the primary reason for gold alignments
being outside the space of one-to-one ITG align-
ments. We show that placing linear potential func-
tions on many-to-one blocks can substantially im-
prove performance.

Finally, to scale up our system, we give a com-
bination of pruning techniques that allows us to
sum ITG alignments two orders of magnitude
faster than naive inside-outside parsing.

All in all, our discriminatively trained, block
ITG models produce alignments which exhibit
the best AER on the NIST 2002 Chinese-English
alignment data set. Furthermore, they result in
a 1.1 BLEU-point improvement over GIZA++
alignments in an end-to-end Hiero (Chiang, 2007)
machine translation system.

2 Alignment Families

In order to structurally restrict attention to rea-
sonable alignments, word alignment models must
constrain the set of alignments considered. In this
section, we discuss and compare alignment fami-
lies used to train our discriminative models.

Initially, as in Taskar et al. (2005) and Moore
et al. (2006), we assume the score a of a potential
alignment a) decomposes as

s(a) =
∑

(i,j)∈a
sij +

∑
i/∈a

siε +
∑
j /∈a

sεj (1)

where sij are word-to-word potentials and siε and
sεj represent English null and foreign null poten-
tials, respectively.

We evaluate our proposed alignments (a)
against hand-annotated alignments, which are
marked with sure (s) and possible (p) alignments.
The alignment error rate (AER) is given by,

AER(a, s,p) = 1− |a ∩ s|+ |a ∩ p|
|a|+ |s|

2.1 1-to-1 Matchings

The class of at most 1-to-1 alignment match-
ings, A1-1, has been considered in several works
(Melamed, 2000; Taskar et al., 2005; Moore et al.,
2006). The alignment that maximizes a set of po-
tentials factored as in Equation (1) can be found

in O(n3) time using a bipartite matching algo-
rithm (Kuhn, 1955).1 On the other hand, summing
over A1-1 is #P -hard (Valiant, 1979).

Initially, we consider heuristic alignment poten-
tials given by Dice coefficients

Dice(e, f) =
2Cef

Ce + Cf

where Cef is the joint count of words (e, f) ap-
pearing in aligned sentence pairs, and Ce and Cf
are monolingual unigram counts.

We extracted such counts from 1.1 million
French-English aligned sentence pairs of Hansards
data (see Section 6.1). For each sentence pair in
the Hansards test set, we predicted the alignment
from A1-1 which maximized the sum of Dice po-
tentials. This yielded 30.6 AER.

2.2 Inversion Transduction Grammar
Wu (1997)’s inversion transduction grammar
(ITG) is a synchronous grammar formalism in
which derivations of sentence pairs correspond to
alignments. In its original formulation, there is a
single non-terminal X spanning a bitext cell with
an English and foreign span. There are three rule
types: Terminal unary productions X → 〈e, f〉,
where e and f are an aligned English and for-
eign word pair (possibly with one being null);
normal binary rules X → X(L)X(R), where the
English and foreign spans are constructed from
the children as 〈X(L)X(R), X(L)X(R)〉; and in-
verted binary rules X ; X(L)X(R), where the
foreign span inverts the order of the children
〈X(L)X(R), X(R)X(L)〉.2 In general, we will call
a bitext cell a normal cell if it was constructed with
a normal rule and inverted if constructed with an
inverted rule.

Each ITG derivation yields some alignment.
The set of such ITG alignments,AITG, are a strict
subset of A1-1 (Wu, 1997). Thus, we will view
ITG as a constraint on A1-1 which we will ar-
gue is generally beneficial. The maximum scor-
ing alignment from AITG can be found in O(n6)
time with synchronous CFG parsing; in practice,
we can make ITG parsing efficient using a variety
of pruning techniques. One computational advan-
tage of AITG over A1-1 alignments is that sum-
mation overAITG is tractable. The corresponding

1We shall use n throughout to refer to the maximum of
foreign and English sentence lengths.

2The superscripts on non-terminals are added only to in-
dicate correspondence of child symbols.
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Figure 1: Best alignments from (a) 1-1 matchings and (b) block ITG (BITG) families respectively. The 1-1
matching is the best possible alignment in the model family, but cannot capture the fact that Indonesia is rendered
as two words in Chinese or that in court is rendered as a single word in Chinese.

dynamic program allows us to utilize likelihood-
based objectives for learning alignment models
(see Section 4).

Using the same heuristic Dice potentials on
the Hansards test set, the maximal scoring align-
ment from AITG yields 28.4 AER—2.4 better
than A1-1 —indicating that ITG can be beneficial
as a constraint on heuristic alignments.

2.3 Block ITG
An important alignment pattern disallowed by
A1-1 is the many-to-one alignment block. While
not prevalent in our hand-aligned French Hansards
dataset, blocks occur frequently in our hand-
aligned Chinese-English NIST data. Figure 1
contains an example. Extending A1-1 to include
blocks is problematic, because finding a maximal
1-1 matching over phrases is NP-hard (DeNero
and Klein, 2008).

With ITG, it is relatively easy to allow contigu-
ous many-to-one alignment blocks without added
complexity.3 This is accomplished by adding ad-
ditional unary terminal productions aligning a for-
eign phrase to a single English terminal or vice
versa. We will use BITG to refer to this block
ITG variant and ABITG to refer to the alignment
family, which is neither contained in nor contains
A1-1. For this alignment family, we expand the
alignment potential decomposition in Equation (1)
to incorporate block potentials sef and sef which
represent English and foreign many-to-one align-
ment blocks, respectively.

One way to evaluate alignment families is to
3In our experiments we limited the block size to 4.

consider their oracle AER. In the 2002 NIST
Chinese-English hand-aligned data (see Sec-
tion 6.2), we constructed oracle alignment poten-
tials as follows: sij is set to +1 if (i, j) is a sure
or possible alignment in the hand-aligned data, -
1 otherwise. All null potentials (siε and sεj) are
set to 0. A max-matching under these potentials is
generally a minimal loss alignment in the family.
The oracle AER computed in this was is 10.1 for
A1-1 and 10.2 for AITG. The ABITG alignment
family has an oracle AER of 1.2. These basic ex-
periments show that AITG outperforms A1-1 for
heuristic alignments, and ABITG provide a much
closer fit to true Chinese-English alignments than
A1-1.

3 Margin-Based Training

In this and the next section, we discuss learning
alignment potentials. As input, we have a training
set D = (x1,a∗1), . . . , (xn,a

∗
n) of hand-aligned

data, where x refers to a sentence pair. We will as-
sume the score of a alignment is given as a linear
function of a feature vector φ(x,a). We will fur-
ther assume the feature representation of an align-
ment, φ(x,a) decomposes as in Equation (1),∑

(i,j)∈a
φij(x) +

∑
i/∈a

φiε(x) +
∑
j /∈a

φεj(x)

In the framework of loss-augmented margin
learning, we seek a w such that w · φ(x,a∗) is
larger than w · φ(x,a) + L(a,a∗) for all a in an
alignment family, where L(a,a∗) is the loss be-
tween a proposed alignment a and the gold align-
ment a∗. As in Taskar et al. (2005), we utilize a



loss that decomposes across alignments. Specif-
ically, for each alignment cell (i, j) which is not
a possible alignment in a∗, we incur a loss of 1
when aij 6= a∗ij ; note that if (i, j) is a possible
alignment, our loss is indifferent to its presence in
the proposal alignment.

A simple loss-augmented learning pro-
cedure is the margin infused relaxed algo-
rithm (MIRA) (Crammer et al., 2006). MIRA
is an online procedure, where at each time step
t+ 1, we update our weights as follows:

wt+1 = argminw||w −wt||22 (2)

s.t. w · φ(x,a∗) ≥ w · φ(x, â) + L(â,a∗)
where â = arg max

a∈A
wt · φ(x,a)

In our data sets, many a∗ are not in A1-1 (and
thus not in AITG), implying the minimum in-
family loss must exceed 0. Since MIRA oper-
ates in an online fashion, this can cause severe
stability problems. On the Hansards data, the
simple averaging technique described by Collins
(2002) yields a reasonable model. On the Chinese
NIST data, however, where almost no alignment
is in A1-1, the update rule from Equation (2) is
completely unstable, and even the averaged model
does not yield high-quality results.

We instead use a variant of MIRA similar to
Chiang et al. (2008). First, rather than update
towards the hand-labeled alignment a∗, we up-
date towards an alignment which achieves mini-
mal loss within the family.4 We call this best-
in-class alignment a∗p. Second, we perform loss-
augmented inference to obtain â. This yields the
modified QP,

wt+1 = argminw||w −wt||22 (3)

s.t. w · φ(x,a∗p) ≥ w · φ(x, â) + L(a,a∗p)
where â = arg max

a∈A
wt · φ(x,a) + λL(a,a∗p)

By setting λ = 0, we recover the MIRA update
from Equation (2). As λ grows, we increase our
preference that â have high loss (relative to a∗p)
rather than high model score. With this change,
MIRA is stable, but still performs suboptimally.
The reason is that initially the score for all align-
ments is low, so we are biased toward only using
very high loss alignments in our constraint. This
slows learning and prevents us from finding a use-
ful weight vector. Instead, in all the experiments

4There might be several alignments which achieve this
minimal loss; we choose arbitrarily among them.

we report here, we begin with λ = 0 and slowly
increase it to λ = 0.5.

4 Likelihood Objective

An alternative to margin-based training is a likeli-
hood objective, which learns a conditional align-
ment distribution Pw(a|x) parametrized as fol-
lows,

logPw(a|x)=w·φ(x,a)−log
∑
a′∈A

exp(w·φ(x,a′))

where the log-denominator represents a sum over
the alignment family A. This alignment probabil-
ity only places mass on members ofA. The likeli-
hood objective is given by,

max
w

∑
(x,a∗)∈A

logPw(a∗|x)

Optimizing this objective with gradient methods
requires summing over alignments. ForAITG and
ABITG, we can efficiently sum over the set of ITG
derivations inO(n6) time using the inside-outside
algorithm. However, for the ITG grammar pre-
sented in Section 2.2, each alignment has multiple
grammar derivations. In order to correctly sum
over the set of ITG alignments, we need to alter
the grammar to ensure a bijective correspondence
between alignments and derivations.

4.1 ITG Normal Form
There are two ways in which ITG derivations dou-
ble count alignments. First, n-ary productions are
not binarized to remove ambiguity; this results in
an exponential number of derivations for diagonal
alignments. This source of overcounting is con-
sidered and fixed by Wu (1997) and Zens and Ney
(2003), which we briefly review here. The result-
ing grammar, which does not handle null align-
ments, consists of a symbol N to represent a bi-
text cell produced by a normal rule and I for a cell
formed by an inverted rule; alignment terminals
can be either N or I . In order to ensure unique
derivations, we stipulate that a N cell can be con-
structed only from a sequence of smaller inverted
cells I . Binarizing the rule N → I2+ introduces
the intermediary symbolN (see Figure 2(a)). Sim-
ilarly for inverse cells, we insist an I cell only be
built by an inverted combination of N cells; bina-
rization of I ; N2+ requires the introduction of
the intermediary symbol I (see Figure 2(b)).

Null productions are also a source of double
counting, as there are many possible orders in
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Figure 2: Illustration of two unambiguous forms of ITG grammars: In (a) and (b), we illustrate the normal grammar
without nulls (presented in Wu (1997) and Zens and Ney (2003)). In (c) and (d), we present a normal form grammar
that accounts for null alignments.

which to attach null alignments to a bitext cell;
we address this by adapting the grammar to force
a null attachment order. We introduce symbols
N00, N10, and N11 to represent whether a normal
cell has taken no nulls, is accepting foreign nulls,
or is accepting English nulls, respectively. We also
introduce symbols I00, I10, and I11 to represent
inverse cells at analogous stages of taking nulls.
As Figures 2 (c) and (d) illustrate, the directions
in which nulls are attached to normal and inverse
cells differ. The N00 symbol is constructed by
one or more ‘complete’ inverted cells I11 termi-
nated by a no-null I00. By placing I00 in the lower
right hand corner, we allow the larger N00 to un-
ambiguously attach nulls. N00 transitions to the
N10 symbol and accepts any number of 〈e, ·〉 En-
glish terminal alignments. Then N10 transitions to
N11 and accepts any number of 〈·, f〉 foreign ter-
minal alignments. An analogous set of grammar
rules exists for the inverted case (see Figure 2(d)
for an illustration). Given this normal form, we
can efficiently compute model expectations over
ITG alignments without double counting.5 To our
knowledge, the alteration of the normal form to
accommodate null emissions is novel to this work.

5The complete grammar adds sentinel symbols to the up-
per left and lower right, and the root symbol is constrained to
be a N00.

4.2 Relaxing the Single Target Assumption

A crucial obstacle for using the likelihood objec-
tive is that a given a∗ may not be in the alignment
family. As in our alteration to MIRA (Section 3),
we could replace a∗ with a minimal loss in-class
alignment a∗p. However, in contrast to MIRA, the
likelihood objective will implicitly penalize pro-
posed alignments which have loss equal to a∗p. We
opt instead to maximize the probability of the set
of alignmentsM(a∗) which achieve the same op-
timal in-class loss. Concretely, let m∗ be the min-
imal loss achievable relative to a∗ in A. Then,

M(a∗) = {a ∈ A|L(a,a∗) = m∗}

When a∗ is an ITG alignment (i.e., m∗ is 0),
M(a∗) consists only of alignments which have all
the sure alignments in a∗, but may have some sub-
set of the possible alignments in a∗. See Figure 3
for a specific example where m∗ = 1.

Our modified likelihood objective is given by,

max
w

∑
(x,a∗)∈D

log
∑

a∈M(a∗)

Pw(a|x)

Note that this objective is no longer convex, as it
involves a logarithm of a summation, however we
still utilize gradient-based optimization. Summing
and obtaining feature expectations over M(a∗)
can be done efficiently using a constrained variant



MIRA Likelihood
1-1 ITG ITG-S ITG-N

Features P R AER P R AER P R AER P R AER
Dice,dist 85.9 82.6 15.6 86.7 82.9 15.0 89.2 85.2 12.6 87.8 82.6 14.6

+lex,ortho 89.3 86.0 12.2 90.1 86.4 11.5 92.0 90.6 8.6 90.3 88.8 10.4
+joint HMM 95.8 93.8 5.0 96.0 93.2 5.2 95.5 94.2 5.0 95.6 94.0 5.1

Table 1: Results on the French Hansards dataset. Columns indicate models and training methods. The rows
indicate the feature sets used. ITG-S uses the simple grammar (Section 2.2). ITG-N uses the normal form grammar
(Section 4.1). For MIRA (Viterbi inference), the highest-scoring alignment is the same, regardless of grammar.

That
is not good

enough

 Se
ne
est
pas

 suffisant

a∗Gold Alignment Target AlignmentsM(a∗)

Figure 3: Often, the gold alignment a∗ isn’t in our
alignment family, here ABITG. For the likelihood ob-
jective (Section 4.2), we maximize the probability of
the setM(a∗) consisting of alignments ABITG which
achieve minimal loss relative to a∗. In this example,
the minimal loss is 1, and we have a choice of remov-
ing either of the sure alignments to the English word
not. We also have the choice of whether to include the
possible alignment, yielding 4 alignments inM(a∗).

of the inside-outside algorithm where sure align-
ments not present in a∗ are disallowed, and the
number of missing sure alignments is appended to
the state of the bitext cell.6

One advantage of the likelihood-based objec-
tive is that we can obtain posteriors over individual
alignment cells,

Pw((i, j)|x) =
∑

a∈A:(i,j)∈a
Pw(a|x)

We obtain posterior ITG alignments by including
all alignment cells (i, j) such that Pw((i, j)|x) ex-
ceeds a fixed threshold t. Posterior thresholding
allows us to easily trade-off precision and recall in
our alignments by raising or lowering t.

5 Dynamic Program Pruning

Both discriminative methods require repeated
model inference: MIRA depends upon loss-
augmented Viterbi parsing, while conditional like-

6Note that alignments that achieve the minimal loss would
not introduce any alignments not either sure or possible, so it
suffices to keep track only of the number of sure recall errors.

lihood uses the inside-outside algorithm for com-
puting cell posteriors. Exhaustive computation
of these quantities requires an O(n6) dynamic
program that is prohibitively slow even on small
supervised training sets. However, most of the
search space can safely be pruned using posterior
predictions from a simpler alignment models. We
use posteriors from two jointly estimated HMM
models to make pruning decisions during ITG in-
ference (Liang et al., 2006). Our first pruning tech-
nique is broadly similar to Cherry and Lin (2007a).
We select high-precision alignment links from the
HMM models: those word pairs that have a pos-
terior greater than 0.9 in either model. Then, we
prune all bitext cells that would invalidate more
than 8 of these high-precision alignments.

Our second pruning technique is to prune all
one-by-one (word-to-word) bitext cells that have a
posterior below 10−4 in both HMM models. Prun-
ing a one-by-one cell also indirectly prunes larger
cells containing it. To take maximal advantage of
this indirect pruning, we avoid explicitly attempt-
ing to build each cell in the dynamic program. In-
stead, we track bounds on the spans for which we
have successfully built ITG cells, and we only iter-
ate over larger spans that fall within those bounds.
The details of a similar bounding approach appear
in DeNero et al. (2009).

In all, pruning reduces MIRA iteration time
from 175 to 5 minutes on the NIST Chinese-
English dataset with negligible performance loss.
Likelihood training time is reduced by nearly two
orders of magnitude.

6 Alignment Quality Experiments

We present results which measure the quality of
our models on two hand-aligned data sets. Our
first is the English-French Hansards data set from
the 2003 NAACL shared task (Mihalcea and Ped-
ersen, 2003). Here we use the same 337/100
train/test split of the labeled data as Taskar et al.



MIRA Likelihood
1-1 ITG BITG BITG-S BITG-N

Features P R AER P R AER P R AER P R AER P R AER
Dice, dist,

blcks, dict, lex 85.7 63.7 26.8 86.2 65.8 25.2 85.0 73.3 21.1 85.7 73.7 20.6 85.3 74.8 20.1
+HMM 90.5 69.4 21.2 91.2 70.1 20.3 90.2 80.1 15.0 87.3 82.8 14.9 88.2 83.0 14.4

Table 2: Word alignment results on Chinese-English. Each column is a learning objective paired with an alignment
family. The first row represents our best model without external alignment models and the second row includes
features from the jointly trained HMM. Under likelihood, BITG-S uses the simple grammar (Section 2.2). BITG-N
uses the normal form grammar (Section 4.1).

(2005); we compute external features from the
same unlabeled data, 1.1 million sentence pairs.
Our second is the Chinese-English hand-aligned
portion of the 2002 NIST MT evaluation set. This
dataset has 491 sentences, which we split into a
training set of 150 and a test set of 191. When we
trained external Chinese models, we used the same
unlabeled data set as DeNero and Klein (2007), in-
cluding the bilingual dictionary.

For likelihood based models, we set the L2 reg-
ularization parameter, σ2, to 100 and the thresh-
old for posterior decoding to 0.33. We report re-
sults using the simple ITG grammar (ITG-S, Sec-
tion 2.2) where summing over derivations dou-
ble counts alignments, as well as the normal form
ITG grammar (ITG-N,Section 4.1) which does
not double count. We ran our annealed loss-
augmented MIRA for 15 iterations, beginning
with λ at 0 and increasing it linearly to 0.5. We
compute Viterbi alignments using the averaged
weight vector from this procedure.

6.1 French Hansards Results

The French Hansards data are well-studied data
sets for discriminative word alignment (Taskar et
al., 2005; Cherry and Lin, 2006; Lacoste-Julien
et al., 2006). For this data set, it is not clear
that improving alignment error rate beyond that of
GIZA++ is useful for translation (Ganchev et al.,
2008). Table 1 illustrates results for the Hansards
data set. The first row uses dice and the same dis-
tance features as Taskar et al. (2005). The first
two rows repeat the experiments of Taskar et al.
(2005) and Cherry and Lin (2006), but adding ITG
models that are trained to maximize conditional
likelihood. The last row includes the posterior of
the jointly-trained HMM of Liang et al. (2006)
as a feature. This model alone achieves an AER
of 5.4. No model significantly improves over the
HMM alone, which is consistent with the results
of Taskar et al. (2005).

6.2 Chinese NIST Results

Chinese-English alignment is a much harder task
than French-English alignment. For example, the
HMM aligner achieves an AER of 20.7 when us-
ing the competitive thresholding heuristic of DeN-
ero and Klein (2007). On this data set, our block
ITG models make substantial performance im-
provements over the HMM, and moreover these
results do translate into downstream improve-
ments in BLEU score for the Chinese-English lan-
guage pair. Because of this, we will briefly de-
scribe the features used for these models in de-
tail. For features on one-by-one cells, we con-
sider Dice, the distance features from (Taskar et
al., 2005), dictionary features, and features for the
50 most frequent lexical pairs. We also trained an
HMM aligner as described in DeNero and Klein
(2007) and used the posteriors of this model as fea-
tures. The first two columns of Table 2 illustrate
these features for ITG and one-to-one matchings.

For our block ITG models, we include all of
these features, along with variants designed for
many-to-one blocks. For example, we include the
average Dice of all the cells in a block. In addi-
tion, we also created three new block-specific fea-
tures types. The first type comprises bias features
for each block length. The second type comprises
features computed from N-gram statistics gathered
from a large monolingual corpus. These include
features such as the number of occurrences of the
phrasal (multi-word) side of a many-to-one block,
as well as pointwise mutual information statistics
for the multi-word parts of many-to-one blocks.
These features capture roughly how “coherent” the
multi-word side of a block is.

The final block feature type consists of phrase
shape features. These are designed as follows: For
each word in a potential many-to-one block align-
ment, we map an individual word to X if it is not
one of the 25 most frequent words. Some example
features of this type are,



• English Block: [the X, X], [in X of, X]

• Chinese Block: [� X, X] [X|, X]

For English blocks, for example, these features
capture the behavior of phrases such as in spite
of or in front of that are rendered as one word in
Chinese. For Chinese blocks, these features cap-
ture the behavior of phrases containing classifier
phrases like�Ç or�P, which are rendered as
English indefinite determiners.

The right-hand three columns in Table 2 present
supervised results on our Chinese English data set
using block features. We note that almost all of
our performance gains (relative to both the HMM
and 1-1 matchings) come from BITG and block
features. The maximum likelihood-trained nor-
mal form ITG model outperforms the HMM, even
without including any features derived from the
unlabeled data. Once we include the posteriors
of the HMM as a feature, the AER decreases to
14.4. The previous best AER result on this data set
is 15.9 from Ayan and Dorr (2006), who trained
stacked neural networks based on GIZA++ align-
ments. Our results are not directly comparable
(they used more labeled data, but did not have the
HMM posteriors as an input feature).

6.3 End-To-End MT Experiments
We further evaluated our alignments in an end-to-
end Chinese to English translation task using the
publicly available hierarchical pipeline JosHUa
(Li and Khudanpur, 2008). The pipeline extracts
a Hiero-style synchronous context-free grammar
(Chiang, 2007), employs suffix-array based rule
extraction (Lopez, 2007), and tunes model pa-
rameters with minimum error rate training (Och,
2003). We trained on the FBIS corpus using sen-
tences up to length 40, which includes 2.7 million
English words. We used a 5-gram language model
trained on 126 million words of the Xinhua section
of the English Gigaword corpus, estimated with
SRILM (Stolcke, 2002). We tuned on 300 sen-
tences of the NIST MT04 test set.

Results on the NIST MT05 test set appear in
Table 3. We compared four sets of alignments.
The GIZA++ alignments7 are combined across di-
rections with the grow-diag-final heuristic, which
outperformed the union. The joint HMM align-
ments are generated from competitive posterior

7We used a standard training regimen: 5 iterations of
model 1, 5 iterations of HMM, 3 iterations of Model 3, and 3
iterations of Model 4.

Alignments Translations
Model Prec Rec Rules BLEU
GIZA++ 62 84 1.9M 23.22
Joint HMM 79 77 4.0M 23.05
Viterbi ITG 90 80 3.8M 24.28
Posterior ITG 81 83 4.2M 24.32

Table 3: Results on the NIST MT05 Chinese-English
test set show that our ITG alignments yield improve-
ments in translation quality.

thresholding (DeNero and Klein, 2007). The ITG
Viterbi alignments are the Viterbi output of the
ITG model with all features, trained to maximize
log likelihood. The ITG Posterior alignments
result from applying competitive thresholding to
alignment posteriors under the ITG model. Our
supervised ITG model gave a 1.1 BLEU increase
over GIZA++.

7 Conclusion

This work presented the first large-scale applica-
tion of ITG to discriminative word alignment. We
empirically investigated the performance of con-
ditional likelihood training of ITG word aligners
under simple and normal form grammars. We
showed that through the combination of relaxed
learning objectives, many-to-one block alignment
potential, and efficient pruning, ITG models can
yield state-of-the art word alignments, even when
the underlying gold alignments are highly non-
ITG. Our models yielded the lowest published er-
ror for Chinese-English alignment and an increase
in downstream translation performance.
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