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Abstract

Recent work has shown that Alternating
Structural Optimization (ASO) can improve
supervised learners by learning feature rep-
resentations from unlabeled data. However,
there is no natural way to include prior
knowledge about features into this frame-
work. In this paper, we present Declar-
atively Regularized Alternating Structural
Optimization (DRASO), a principled way
for injecting prior knowledge into the ASO
framework. We also provide some analysis of
the representations learned by our method.

1. Introduction

While supervised learning algorithms achieve impres-
sive results on a variety of NLP tasks, they rely on the
availability of labeled data. The application of other
available resources to improve over existing supervised
methods has been explored in semi-supervised learn-
ing. There are two primary sources of information
for semi-supervised algorithms: unlabeled data and
prior knowledge. Alternating Structual Optimization
(ASO) (Ando & Zhang, 2005) is a semi-supervised
learning technique based on unlabeled data, which has
achieved considerable success in many important prob-
lems (Blitzer et al., 2006; Blitzer et al., 2007). ASO
learns a new data representation by constructing and
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solving a multitask learning problem using unlabeled
data. While ASO makes excellent use of unlabeled
data, there is currently no way to encode prior in-
formation in learning the representations. For exam-
ple, in the sentiment classification task, a short list of
positive and negative words can be used to bootstrap
learning (Turney, 2002).

In this work we seek to combine ASO with this type
of prior knowledge. We present Declaratively Regu-
larized ASO (DRASO), which favors learning repre-
sentations that are consistent with some side infor-
mation. DRASO combines both unlabeled data and
prior knowledge to find a single representation of the
data. This paper describes DRASO and shows that
the representations learned for sentiment classification
using side information can improve over a standard
ASO representation.

2. DRASO

Given a number of related supervised learning prob-
lems, ASO learns a shared low dimensional representa-
tion of the data in order to minimize the empirical risk
across the various tasks. Specifically, let the training
set for task ` be {(x`i , y`i )}

n`
i=1. Given m such training

sets, ASO learns a shared representation Φ̂ and associ-
ated weight vectors ŵ`, v̂`, ` = 1, ...,m by minimizing
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the loss over the training sets:

[
{ŵ`, v̂`}, Φ̂

]
=

argmin
w`,v`,Φ

m∑
`=1

(
1
n`

n∑̀
i=1

L
(
(w` + Φ′v`)′x`i , y

`
i

)
+ λ||w`||2

)
s.t. ΦΦ′ = Ik×k.

The matrix Φ is a shared transformation which maps
a feature vector x ∈ RD to a low-dimensional vector
in Rk. Given Φ, w`, and v`, the prediction for an
instance x` is the linear function (w`+Φ′v`)′x` where
w` is the weight vector applied to the original instance
and v` is the weight vector applied to the shared, low-
dimensional represention, Φx`.

Unfortunately, as written, the ASO criterion does not
allow one to inject prior knowledge into the learned
shared transformation Φ. For example, in the senti-
ment classification task, we may wish to represent the
fact that presence of excellent or superb in a document
express similar sentiment and hence a classifier should
assign similar weights to the two features correspond-
ing to the presence of these two words. To incorporate
such declarative information, we suppose the existence
of a prior knowledge graph which encodes knowledge
about which features should be similarly correlated
with the class labels in a “good” model. The nodes of
the graph represent features and the edges represent
feature similarities. The edges are weighted by the
strength of similarity. These weights are encoded as a
matrix P ∈ RD×D with each entry Pij ≥ 0, Pii = 0
and

∑
j Pij = 1 for all i.

To enforce the similarity requirements, we replace the
ridge regularization term with a penalty on the in-
duced norm: w

′
Mw, where M = (I − P )

′
(I − P ).

This encourages features to be weighted similarly to
the average of their neighbors’ weights and is closely
related to the LLE objective (Roweis & Saul, 2000;
Sandler et al., 2008). The new optimization problem
is then given as:

[
{ŵ`, v̂`}, Φ̂

]
=

argmin
w`,v`,Φ

m∑
`=1

(
1
n`

n∑̀
i=1

L
(
(w` + Φ′v`)′x`i , y

`
i

)
+ λw

′
Mw

)
s.t. ΦMΦ′ = Ik×k.

We call this new objective DRASO, since the ASO
objective is declaratively regularized. Solving for Φ
yields a new eigenvalue problem, which can be solved
efficiently (section 2.1).

2.1. Solving for Φ

Our main goal is to find the transformation Φ which we
will use to create a new representation for the super-
vised problem. As in (Ando & Zhang, 2005), we can
simplify the problem by making the change of variables
u` = w` + Φ

′
v`. This yields the optimization problem

[
{û`, v̂`}, Φ̂

]
=

argmin
u`,v`,Φ

m∑
`=1

(
1
n`

n∑̀
i=1

L
(

(u
′

`x
`
i , y

`
i

)
+

λ(u` − Φ
′
v`)

′
M(u` − Φ

′
v`)
)

s.t. ΦMΦ′ = Ik×k.

Again following (Ando & Zhang, 2005), we can solve
this problem using an alternating minimization tech-
nique. In the first step of the alternation, we fix Φ
and v` and solve for u. As before, this step amounts
to solving the decoupled linear predictions for each of
the problems. In the second step, we fix u` and solve
for v` and Φ. First we note that v` has a closed form
solution in terms of Φ and u`.

[
{v̂`}, Φ̂

]
=

argmin
v`,Φ

m∑
`=1

(
λ(u` − Φ

′
v`)

′
M(u` − Φ

′
v`)
)

s.t. ΦMΦ′ = Ik×k.

Solving for v` in this quadratic form gives us v` =
ΦMu`. Now we can solve for the following minimiza-
tion problem for Φ:

[
Φ̂
]

= argmax
Φ

m∑
`=1

||ΦMu`||22 s.t. ΦMΦ′ = Ik×k.

Following (Ando & Zhang, 2005), we have that this
problem is equivalent to the problem

[
Φ̂
]

= argmax
Φ

tr
(
ΦMUU

′
Φ
)

s.t. ΦMΦ′ = Ik×k.

By looking at the first order conditions for the La-
grangian, we can see that the solutions have the form

MUU
′
MΦ = αMΦ
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We can transform this generalized eigenvalue problem
into one that is smaller and easier to manage if we let
θ = U

′
MΦ. Now, right multiplying by U

′
, we get:

U
′
MUθ = αθ

That is we can solve for the eigenvectors of the mod-
ified gram matrix (transformed via M). Now, we can
substitute back into the original problem (noting that
M is symmetric).

MUU
′
MΦ = αMΦ

MUθ = αMΦ

Thus we have, Φ = 1
αUθ.

3. Experimental Results

ASO and DRASO representations were compared on
the sentiment classification task using Amazon book
reviews from Blitzer et al. (2007). Auxiliary problems
were selected using mutual information. Prior knowl-
edge was obtained from SentiWordNet (Esuli & Se-
bastiani, 2006) by manually selecting 31 positive and
42 negative words from the top ranked positive and
negative words in SentiWordNet. Each selected word
was connected in graph P to its 10 nearest neighbors
according to SentiWordNet rank.

The learned Φs were used to project 32,502 words into
a two dimensional space (Figure 1). Words on the prior
knowledge lists are indicated by squares (negative) and
triangles (positive). Points are color coded based on
their behavior in a large sample of labeled training
data (13,391 instances) as red (positive), blue (nega-
tive) and grey (neutral). The figures indicate that list
words clumped by ASO are separated by DRASO. Ad-
ditionally, while pulling apart high-sentiment words,
neutral words are left together. Finally, observe that
additional points not on the list have been pulled as
well, showing the effect of prior knowledge on new fea-
tures. These results indicate that DRASO can incor-
porate prior information into ASO in a principled and
effective way.

4. Related Work

The feature graph based additional regularization
term in the DRASO objective is close in spirit to Fused
Lasso (Tibshirani et al., 2005). However, there are
crucial differences. Firstly, fused lasso assumes an or-
dering over the features while no such restriction is

necessary in case of DRASO. Secondly, fused lasso im-
poses an L1 penalty over differences in weights of con-
secutive features (assuming the features are ordered
as mentioned above). In contrast, DRASO uses an L2

norm and the regularization is imposed over immediate
neighborhood rather than pairwise constraints. The
L1 penalty in (Tibshirani et al., 2005) prefers weights
of linked features to be exactly same. However, in
many problem domains (including the ones considered
in this paper), it is desirable to have similar rather
than identical weights.

The additional regularization term in the DRASO ob-
jective is similar to the one in Penalized Discriminant
Analysis (PDA) (Hastie et al., 1995). While PDA per-
forms standard classification, DRASO is focused on
learning a new and more effective representation in
ASO’s multitask learning setting. The learned repre-
sentation could in turn be used as additional features
in a standard classifier, which is currently being inves-
tigated (Section 5).

5. Conclusion

In this paper we have presented DRASO, which ex-
tends ASO by adding a regularization term. This
additional term makes it possible to inject valuable
prior knowledge into the ASO framework. We have
shown that while solving for Φ, incorporation of the
additional regularization term results in an eigenvalue
problem (different from ASO) which can be solved effi-
ciently. We have also presented experimental evidence
demonstrating effectiveness of DRASO over ASO.

For future work, we are considering applications to
learning tasks for which ASO has performed well. For
many of these tasks, prior knowledge can be added
through existing resources or through the use of unsu-
pervised methods to infer relations between features.
We are also investigating under what conditions prior
knowledge can improve over labeled data alone.
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spent, poorly, not, disappointing, 
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nothing, time, better

size, glad, 
academic,
top, thus, 

considered, 
finished 

easy, great, 
excellent, 

recommend,  
must, world

sad, worst, sorry, waste 
disappointed, confusing, 
horrible, terrible, failed

accept, create, coming, 
realized, excited, 

somewhere

great, loved, excellent, 
accurate, fantastic, funny 
recommend outstanding

Figure 1. ASO and DRASO projections of 32,502 words into a two-dimensional space. Squares (negative) and triangles
(positive) indicate prior knowledge words. Polarity of features as measured from labeled data is indicated by blue
(negative), red (positive) and grey (neutral). Some of the features are annotated to demonstrate the effects of the
projection.
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