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Abstract

Syntactic machine translation systems extract
rules from bilingual, word-aligned, syntacti-
cally parsed text, but current systems for pars-
ing and word alignment are at best cascaded
and at worst totally independent of one an-
other. This work presents a unified joint model
for simultaneous parsing and word alignment.
To flexibly model syntactic divergence, we de-
velop a discriminative log-linear model over
two parse trees and an ITG derivation which
is encouraged but not forced to synchronize
with the parses. Our model gives absolute
improvements of 3.3 F1 for English pars-
ing, 2.1 F1 for Chinese parsing, and 5.5 F1

for word alignment over each task’s indepen-
dent baseline, giving the best reported results
for both Chinese-English word alignment and
joint parsing on the parallel portion of the Chi-
nese treebank. We also show an improvement
of 1.2 BLEU in downstream MT evaluation
over basic HMM alignments.

1 Introduction

Current syntactic machine translation (MT) sys-
tems build synchronous context free grammars from
aligned syntactic fragments (Galley et al., 2004;
Zollmann et al., 2006). Extracting such grammars
requires that bilingual word alignments and mono-
lingual syntactic parses be compatible. Because of
this, much recent work in both word alignment and
parsing has focused on changing aligners to make
use of syntactic information (DeNero and Klein,
2007; May and Knight, 2007; Fossum et al., 2008)
or changing parsers to make use of word align-
ments (Smith and Smith, 2004; Burkett and Klein,

2008; Snyder et al., 2009). In the first case, how-
ever, parsers do not exploit bilingual information.
In the second, word alignment is performed with a
model that does not exploit syntactic information.
This work presents a single, joint model for parsing
and word alignment that allows both pieces to influ-
ence one another simultaneously.

While building a joint model seems intuitive,
there is no easy way to characterize how word align-
ments and syntactic parses should relate to each
other in general. In the ideal situation, each pair
of sentences in a bilingual corpus could be syntacti-
cally parsed using a synchronous context-free gram-
mar. Of course, real translations are almost always
at least partially syntactically divergent. Therefore,
it is unreasonable to expect perfect matches of any
kind between the two sides’ syntactic trees, much
less expect that those matches be well explained at
a word level. Indeed, it is sometimes the case that
large pieces of a sentence pair are completely asyn-
chronous and can only be explained monolingually.

Our model exploits synchronization where pos-
sible to perform more accurately on both word
alignment and parsing, but also allows indepen-
dent models to dictate pieces of parse trees and
word alignments when synchronization is impossi-
ble. This notion of “weak synchronization” is pa-
rameterized and estimated from data to maximize
the likelihood of the correct parses and word align-
ments. Weak synchronization is closely related to
the quasi-synchronous models of Smith and Eis-
ner (2006; 2009) and the bilingual parse reranking
model of Burkett and Klein (2008), but those models
assume that the word alignment of a sentence pair is
known and fixed.

To simultaneously model both parses and align-



ments, our model loosely couples three separate
combinatorial structures: monolingual trees in the
source and target languages, and a synchronous ITG
alignment that links the two languages (but is not
constrained to match linguistic syntax). The model
has no hard constraints on how these three struc-
tures must align, but instead contains a set of “syn-
chronization” features that are used to propagate
influence between the three component grammars.
The presence of synchronization features couples
the parses and alignments, but makes exact inference
in the model intractable; we show how to use a vari-
ational mean field approximation, both for comput-
ing approximate feature expectations during train-
ing, and for performing approximate joint inference
at test time.

We train our joint model on the parallel, gold
word-aligned portion of the Chinese treebank.
When evaluated on parsing and word alignment, this
model significantly improves over independently-
trained baselines: the monolingual parser of Petrov
and Klein (2007) and the discriminative word
aligner of Haghighi et al. (2009). It also improves
over the discriminative, bilingual parsing model
of Burkett and Klein (2008), yielding the highest
joint parsing F1 numbers on this data set. Finally,
our model improves word alignment in the context
of translation, leading to a 1.2 BLEU increase over
using HMM word alignments.

2 Joint Parsing and Alignment

Given a source-language sentence, s, and a target-
language sentence, s′, we wish to predict a source
tree t, a target tree t′, and some kind of alignment
a between them. These structures are illustrated in
Figure 1.

To facilitate these predictions, we define a condi-
tional distribution P(t, a, t′|s, s′). We begin with a
generic conditional exponential form:

P(t, a, t′|s, s′) ∝ exp θ>φ(t, a, t′, s, s′) (1)

Unfortunately, a generic model of this form is in-
tractable, because we cannot efficiently sum over
all triples (t, a, t′) without some assumptions about
how the features φ(t, a, t′, s, s′) decompose.

One natural solution is to restrict our candidate
triples to those given by a synchronous context free

grammar (SCFG) (Shieber and Schabes, 1990). Fig-
ure 1(a) gives a simple example of generation from
a log-linearly parameterized synchronous grammar,
together with its features. With the SCFG restric-
tion, we can sum over the necessary structures using
the O(n6) bitext inside-outside algorithm, making
P(t, a, t′|s, s′) relatively efficient to compute expec-
tations under.

Unfortunately, an SCFG requires that all the con-
stituents of each tree, from the root down to the
words, are generated perfectly in tandem. The re-
sulting inability to model any level of syntactic di-
vergence prevents accurate modeling of the individ-
ual monolingual trees. We will consider the run-
ning example from Figure 2 throughout the paper.
Here, for instance, the verb phrase established in
such places as Quanzhou, Zhangzhou, etc. in En-
glish does not correspond to any single node in the
Chinese tree. A synchronous grammar has no choice
but to analyze this sentence incorrectly, either by ig-
noring this verb phrase in English or postulating an
incorrect Chinese constituent that corresponds to it.

Therefore, instead of requiring strict synchroniza-
tion, our model treats the two monolingual trees and
the alignment as separate objects that can vary arbi-
trarily. However, the model rewards synchronization
appropriately when the alignment brings the trees
into correspondence.

3 Weakly Synchronized Grammars

We propose a joint model which still gives probabil-
ities on triples (t, a, t′). However, instead of using
SCFG rules to synchronously enforce the tree con-
straints on t and t′, we only require that each of t
and t′ be well-formed under separate monolingual
CFGs.

In order to permit efficient enumeration of all pos-
sible alignments a, we also restrict a to the set of
unlabeled ITG bitrees (Wu, 1997), though again we
do not require that a relate to t or t′ in any particular
way. Although this assumption does limit the space
of possible word-level alignments, for the domain
we consider (Chinese-English word alignment), the
reduced space still contains almost all empirically
observed alignments (Haghighi et al., 2009).1 For

1See Section 8.1 for some new terminal productions re-
quired to make this true for the parallel Chinese treebank.
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Figure 1: Source trees, t (right), alignments, a (grid), and target trees, t′ (top), and feature decompositions for syn-
chronous (a) and weakly synchronous (b) grammars. Features always condition on bispans and/or anchored syntactic
productions, but weakly synchronous grammars permit more general decompositions.

example, in Figure 2, the word alignment is ITG-
derivable, and each of the colored rectangles is a bi-
span in that derivation.

There are no additional constraints beyond the
independent, internal structural constraints on t, a,
and t′. This decoupling permits derivations like that
in Figure 1(b), where the top-level syntactic nodes
align, but their children are allowed to diverge. With
the three structures separated, our first model is a
completely factored decomposition of (1).

Formally, we represent a source tree t as a set of
nodes {n}, each node representing a labeled span.
Likewise, a target tree t′ is a set of nodes {n′}.2 We
represent alignments a as sets of bispans {b}, indi-
cated by rectangles in Figure 1.3 Using this notation,
the initial model has the following form:

P(t, a, t′|s, s′) ∝ exp

∑
n∈t

θ>φF (n, s)+

∑
b∈a

θ>φA(b, s, s′)+
∑
n′∈t′

θ>φE(n′, s′)

 (2)

Here φF (n, s) indicates a vector of source node fea-
tures, φE(n′, s′) is a vector of target node features,
and φA(b, s, s′) is a vector of alignment bispan fea-
tures. Of course, this model is completely asyn-

2For expositional clarity, we describe n and n′ as labeled
spans only. However, in general, features that depend on n or
n′ are permitted to depend on the entire rule, and do in our final
system.

3Alignments a link arbitrary spans of s and s′ (including
non-constituents and individual words). We discuss the relation
to word-level alignments in Section 4.

chronous so far, and fails to couple the trees and
alignments at all. To permit soft constraints between
the three structures we are modeling, we add a set of
synchronization features.

For n ∈ t and b ∈ a, we say that n� b if n and b
both map onto the same span of s. We define b� n′

analogously for n′ ∈ t′. We now consider three
different types of synchronization features. Source-
alignment synchronization features φ�(n, b) are ex-
tracted whenever n � b. Similarly, target-alignment
features φ�(b, n′) are extracted if b � n′. These
features capture phenomena like that of bispan b7
in Figure 2. Here the Chinese noun地 synchronizes
with the ITG derivation, but the English projection
of b7 is a distituent. Finally, we extract source-target
features φ./(n, b, n′) whenever n�b�n′. These fea-
tures capture complete bispan synchrony (as in bi-
span b8) and can be expressed over triples (n, b, n′)
which happen to align, allowing us to reward syn-
chrony, but not requiring it. All of these licensing
conditions are illustrated in Figure 1(b).

With these features added, the final form of the
model is:

P(t, a, t′|s, s′) ∝ exp

∑
n∈t

θ>φF (n, s)+

∑
b∈a

θ>φA(b, s, s′)+
∑
n′∈t′

θ>φE(n′, s′)+∑
n�b

θ>φ�(n, b)+
∑
b�n′

θ>φ�(b, n′)+

∑
n�b�n′

θ>φ./(n, b, n′)


(3)



We emphasize that because of the synchronization
features, this final form does not admit any known
efficient dynamic programming for the exact com-
putation of expectations. We will therefore turn to a
variational inference method in Section 6.

4 Features

With the model’s locality structure defined, we
just need to specify the actual feature function,
φ. We divide the features into three types: pars-
ing features (φF (n, s) and φE(n′, s′)), alignment
features (φA(b, s, s′)) and synchronization features
(φ�(n, b), φ�(b, n′), and φ./(n, b, n′)). We detail
each of these in turn here.

4.1 Parsing

The monolingual parsing features we use are sim-
ply parsing model scores under the parser of Petrov
and Klein (2007). While that parser uses heavily re-
fined PCFGs with rule probabilities defined at the
refined symbol level, we interact with its posterior
distribution via posterior marginal probabilities over
unrefined symbols. In particular, to each unrefined
anchored production iAj → iBkCj , we associate a
single feature whose value is the marginal quantity
log P(iBkCj |iAj , s) under the monolingual parser.
These scores are the same as the variational rule
scores of Matsuzaki et al. (2005).4

4.2 Alignment

We begin with the same set of alignment features
as Haghighi et al. (2009), which are defined only for
terminal bispans. In addition, we include features on
nonterminal bispans, including a bias feature, fea-
tures that measure the difference in size between
the source and target spans, features that measure
the difference in relative sentence position between
the source and target spans, and features that mea-
sure the density of word-to-word alignment poste-
riors under a separate unsupervised word alignment
model.

4Of course the structure of our model permits any of the
additional rule-factored monolingual parsing features that have
been described in the parsing literature, but in the present work
we focus on the contributions of joint modeling.

4.3 Synchronization

Our synchronization features are indicators for the
syntactic types of the participating nodes. We de-
termine types at both a coarse (more collapsed
than Treebank symbols) and fine (Treebank sym-
bol) level. At the coarse level, we distinguish be-
tween phrasal nodes (e.g. S, NP), synthetic nodes
introduced in the process of binarizing the grammar
(e.g. S′, NP′), and part-of-speech nodes (e.g. NN,
VBZ). At the fine level, we distinguish all nodes
by their exact label. We use coarse and fine types
for both partially synchronized (source-alignment or
target-alignment) features and completely synchro-
nized (source-alignment-target) features. The inset
of Figure 2 shows some sample features. Of course,
we could devise even more sophisticated features by
using the input text itself. As we shall see, however,
our model gives significant improvements with these
simple features alone.

5 Learning

We learn the parameters of our model on the paral-
lel portion of the Chinese treebank. Although our
model assigns probabilities to entire synchronous
derivations of sentences, the parallel Chinese tree-
bank gives alignments only at the word level (1 by
1 bispans in Figure 2). This means that our align-
ment variable a is not fully observed. Because of
this, given a particular word alignment w, we max-
imize the marginal probability of the set of deriva-
tions A(w) that are consistent with w (Haghighi et
al., 2009).5

L(θ)=log
∑

a∈A(wi)

P(ti, a, t′i|si, s′i)

We maximize this objective using standard gradient
methods (Nocedal and Wright, 1999). As with fully
visible log-linear models, the gradient for the ith sen-
tence pair with respect to θ is a difference of feature
expectations:

∇L(θ) =EP(a|ti,wi,t′i,si,s′i)
[
φ(ti, a, t′i, si, s

′
i)
]

− EP(t,a,t′|si,s′i)
[
φ(t, a, t′, si, s′i)

] (4)

5We also learn from non-ITG alignments by maximizing the
marginal probability of the set of minimum-recall error align-
ments in the same way as Haghighi et al. (2009)
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We cannot efficiently compute the model expecta-
tions in this equation exactly. Therefore we turn next
to an approximate inference method.

6 Mean Field Inference

Instead of computing the model expectations from
(4), we compute the expectations for each sentence
pair with respect to a simpler, fully factored distri-
bution Q(t, a, t′) = q(t)q(a)q(t′). Rewriting Q in
log-linear form, we have:

Q(t, a, t′) ∝ exp

∑
n∈t

ψn +
∑
b∈a

ψb +
∑
n′∈t′

ψn′


Here, the ψn, ψb and ψn′ are variational parameters
which we set to best approximate our weakly syn-
chronized model from (3):

ψ∗ = argmin
ψ

KL
(

Qψ||Pθ(t, a, t′|s, s′)
)

Once we have found Q, we compute an approximate
gradient by replacing the model expectations with

expectations under Q:

EQ(a|wi)
[
φ(ti, a, t′i, si, s

′
i)
]

− EQ(t,a,t′|si,s′i)
[
φ(t, a, t′, si, s′i)

]
Now, we will briefly describe how we compute Q.
First, note that the parameters ψ of Q factor along
individual source nodes, target nodes, and bispans.
The combination of the KL objective and our par-
ticular factored form of Q make our inference pro-
cedure a structured mean field algorithm (Saul and
Jordan, 1996). Structured mean field techniques are
well-studied in graphical models, and our adaptation
in this section to multiple grammars follows stan-
dard techniques (see e.g. Wainwright and Jordan,
2008).

Rather than derive the mean field updates for ψ,
we describe the algorithm (shown in Figure 3) pro-
cedurally. Similar to block Gibbs sampling, we it-
eratively optimize each component (source parse,
target parse, and alignment) of the model in turn,
conditioned on the others. Where block Gibbs sam-
pling conditions on fixed trees or ITG derivations,
our mean field algorithm maintains uncertainty in



Input: sentence pair (s, s′)
parameter vector θ

Output: variational parameters ψ

1. Initialize
ψ0
n ← θ>φF (n, s)

ψ0
b←θ>φA(b, s, s′)

ψ0
n′←θ>φE(n

′, s′)

µ0
n ←

P
t qψ0(t)I(n ∈ t), etc for µ0

b , µ0
n′

2. While not converged, for each n, n′, b in
the monolingual and ITG charts

ψin ← θ>
“
φF (n, s) +

P
b,n�b µ

i−1
b φ�(n, b)+P

b,n�b

P
n′,b�n′ µ

i−1
b µi−1

n′ φ./(n, b, n
′)
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µin ←
P
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ψib ← θ>
“
φA(b, s, s′) +

P
n,n�b µ

i−1
n φ�(n, b)+P

n′,b�n′ µ
i−1
n′ φ�(b, n′)+P

n,n�b

P
n′,b�n′ µ

i−1
n µi−1

n′ φ./(n, b, n
′)
”

µb ←
P
a qψ(a)I(b ∈ a) (bitext inside-outside)

updates for ψin′ , µin′ analogous to ψin, µin

3. Return variational parameters ψ
Figure 3: Structured mean field inference for the weakly
synchronized model. I(n ∈ t) is an indicator value for
the presence of node n in source tree t.

the form of monolingual parse forests or ITG forests.
The key components to this uncertainty are the
expected counts of particular source nodes, target
nodes, and bispans under the mean field distribution:

µn =
∑
t

qψ(t)I(n ∈ t)

µn′ =
∑
t′

qψ(t′)I(n′ ∈ t′)

µb =
∑
a

qψ(a)I(b ∈ a)

Since dynamic programs exist for summing over
each of the individual factors, these expectations can
be computed in polynomial time.

6.1 Pruning

Although we can approximate the expectations from
(4) in polynomial time using our mean field distribu-
tion, in practice we must still prune the ITG forests
and monolingual parse forests to allow tractable in-
ference. We prune our ITG forests using the same

basic idea as Haghighi et al. (2009), but we em-
ploy a technique that allows us to be more aggres-
sive. Where Haghighi et al. (2009) pruned bispans
based on how many unsupervised HMM alignments
were violated, we first train a maximum-matching
word aligner (Taskar et al., 2005) using our super-
vised data set, which has only half the precision er-
rors of the unsupervised HMM. We then prune ev-
ery bispan which violates at least three alignments
from the maximum-matching aligner. When com-
pared to pruning the bitext forest of our model with
Haghighi et al. (2009)’s HMM technique, this new
technique allows us to maintain the same level of ac-
curacy while cutting the number of bispans in half.

In addition to pruning the bitext forests, we also
prune the syntactic parse forests using the mono-
lingual parsing model scores. For each unrefined
anchored production iAj → iBkCj , we com-
pute the marginal probability P(iAj ,i Bk,k Cj |s) un-
der the monolingual parser (these are equivalent to
the maxrule scores from Petrov and Klein 2007). We
only include productions where this probability is
greater than 10−20. Note that at training time, we are
not guaranteed that the gold trees will be included
in the pruned forest. Because of this, we replace the
gold trees ti, t′i with oracle trees from the pruned for-
est, which can be found efficiently using a variant of
the inside algorithm (Huang, 2008).

7 Testing

Once the model has been trained, we still need to
determine how to use it to predict parses and word
alignments for our test sentence pairs. Ideally, given
the sentence pair (s, s′), we would find:

(t∗, w∗, t′∗) = argmax
t,w,t′

P(t, w, t′|s, s′)

= argmax
t,w,t′

∑
a∈A(w)

P(t, a, t′|s, s′)

Of course, this is also intractable, so we once again
resort to our mean field approximation. This yields
the approximate solution:

(t∗, w∗, t′∗) = argmax
t,w,t′

∑
a∈A(w)

Q(t, a, t′)

However, recall that Q incorporates the model’s mu-
tual constraint into the variational parameters, which



factor into q(t), q(a), and q(t′). This allows us to
simplify further, and find the maximum a posteriori
assignments under the variational distribution. The
trees can be found quickly using the Viterbi inside
algorithm on their respective qs. However, the sum
for computing w∗ under q is still intractable.

As we cannot find the maximum probability word
alignment, we provide two alternative approaches
for finding w∗. The first is to just find the Viterbi
ITG derivation a∗ = argmaxa q(a) and then set w∗

to contain exactly the 1x1 bispans in a∗. The second
method, posterior thresholding, is to compute poste-
rior marginal probabilities under q for each 1x1 cell
beginning at position i, j in the word alignment grid:

m(i, j) =
∑
a

q(a)I((i, i+ 1, j, j + 1) ∈ a)

We then include w(i, j) in w∗ if m(w(i, j)) > τ ,
where τ is a threshold chosen to trade off precision
and recall. For our experiments, we found that the
Viterbi alignment was uniformly worse than poste-
rior thresholding. All the results from the next sec-
tion use the threshold τ = 0.25.

8 Experiments

We trained and tested our model on the translated
portion of the Chinese treebank (Bies et al., 2007),
which includes hand annotated Chinese and English
parses and word alignments. We separated the data
into three sets: train, dev, and test, according to the
standard Chinese treebank split. To speed up train-
ing, we only used training sentences of length ≤ 50
words, which left us with 1974 of 2261 sentences.
We measured the results in two ways. First, we
directly measured F1 for English parsing, Chinese
parsing, and word alignment on a held out section of
the hand annotated corpus used to train the model.
Next, we further evaluated the quality of the word
alignments produced by our model by using them as
input for a machine translation system.

8.1 Dataset-specific ITG Terminals

The Chinese treebank gold word alignments include
significantly more many-to-many word alignments
than those used by Haghighi et al. (2009). We are
able to produce some of these many-to-many align-
ments by including new many-to-many terminals in
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Figure 4: Examples of phrasal alignments that can be rep-
resented by our new ITG terminal bispans.

our ITG word aligner, as shown in Figure 4. Our
terminal productions sometimes capture non-literal
translation like both sides or in recent years. They
also can allow us to capture particular, systematic
changes in the annotation standard. For example,
the gapped pattern from Figure 4 captures the stan-
dard that English word the is always aligned to the
Chinese head noun in a noun phrase. We featurize
these non-terminals with features similar to those
of Haghighi et al. (2009), and all of the alignment
results we report in Section 8.2 (both joint and ITG)
employ these features.

8.2 Parsing and Word Alignment
To compute features that depend on external models,
we needed to train an unsupervised word aligner and
monolingual English and Chinese parsers. The un-
supervised word aligner was a pair of jointly trained
HMMs (Liang et al., 2006), trained on the FBIS cor-
pus. We used the Berkeley Parser (Petrov and Klein,
2007) for both monolingual parsers, with the Chi-
nese parser trained on the full Chinese treebank, and
the English parser trained on a concatenation of the
Penn WSJ corpus (Marcus et al., 1993) and the En-
glish side of train.6

We compare our parsing results to the mono-
lingual parsing models and to the English-Chinese
bilingual reranker of Burkett and Klein (2008),
trained on the same dataset. The results are in
Table 1. For word alignment, we compare to

6To avoid overlap in the data used to train the monolingual
parsers and the joint model, at training time, we used a separate
version of the Chinese parser, trained only on articles 400-1151
(omitting articles in train). For English parsing, we deemed it
insufficient to entirely omit the Chinese treebank data from the
monolingual parser’s training set, as otherwise the monolingual
parser would be trained entirely on out-of-domain data. There-
fore, at training time we used two separate English parsers: to
compute model scores for the first half of train, we used a parser
trained on a concatenation of the WSJ corpus and the second
half of train, and vice versa for the remaining sentences.



Test Results
Ch F1 Eng F1 Tot F1

Monolingual 83.6 81.2 82.5
Reranker 86.0 83.8 84.9
Joint 85.7 84.5 85.1

Table 1: Parsing results. Our joint model has the highest
reported F1 for English-Chinese bilingual parsing.

Test Results
Precision Recall AER F1

HMM 86.0 58.4 30.0 69.5
ITG 86.8 73.4 20.2 79.5
Joint 85.5 84.6 14.9 85.0

Table 2: Word alignment results. Our joint model has the
highest reported F1 for English-Chinese word alignment.

the baseline unsupervised HMM word aligner and
to the English-Chinese ITG-based word aligner
of Haghighi et al. (2009). The results are in Table 2.

As can be seen, our model makes substantial im-
provements over the independent models. For pars-
ing, we improve absolute F1 over the monolingual
parsers by 2.1 in Chinese, and by 3.3 in English.
For word alignment, we improve absolute F1 by 5.5
over the non-syntactic ITG word aligner. In addi-
tion, our English parsing results are better than those
of the Burkett and Klein (2008) bilingual reranker,
the current top-performing English-Chinese bilin-
gual parser, despite ours using a much simpler set
of synchronization features.

8.3 Machine Translation

We further tested our alignments by using them to
train the Joshua machine translation system (Li and
Khudanpur, 2008). Table 3 describes the results of
our experiments. For all of the systems, we tuned

Rules Tune Test
HMM 1.1M 29.0 29.4
ITG 1.5M 29.9 30.4†

Joint 1.5M 29.6 30.6

Table 3: Tune and test BLEU results for machine transla-
tion systems built with different alignment tools. † indi-
cates a statistically significant difference between a sys-
tem’s test performance and the one above it.

on 1000 sentences of the NIST 2004 and 2005 ma-
chine translation evaluations, and tested on 400 sen-
tences of the NIST 2006 MT evaluation. Our train-
ing set consisted of 250k sentences of newswire dis-
tributed with the GALE project, all of which were
sub-sampled to have high Ngram overlap with the
tune and test sets. All of our sentences were of
length at most 40 words. When building the trans-
lation grammars, we used Joshua’s default “tight”
phrase extraction option. We ran MERT for 4 itera-
tions, optimizing 20 weight vectors per iteration on
a 200-best list.

Table 3 gives the results. On the test set, we also
ran the approximate randomization test suggested by
Riezler and Maxwell (2005). We found that our joint
parsing and alignment system significantly outper-
formed the HMM aligner, but the improvement over
the ITG aligner was not statistically significant.

9 Conclusion

The quality of statistical machine translation mod-
els depends crucially on the quality of word align-
ments and syntactic parses for the bilingual training
corpus. Our work presented the first joint model
for parsing and alignment, demonstrating that we
can improve results on both of these tasks, as well
as on downstream machine translation, by allowing
parsers and word aligners to simultaneously inform
one another. Crucial to this improved performance
is a notion of weak synchronization, which allows
our model to learn when pieces of a grammar are
synchronized and when they are not. Although ex-
act inference in the weakly synchronized model is
intractable, we developed a mean field approximate
inference scheme based on monolingual and bitext
parsing, allowing for efficient inference.
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