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ABSTRACT

DOMAIN ADAPTATION OF NATURAL LANGUAGE PROCESSING SYSTEMS

John Blitzer

Fernando Pereira

Statistical language processing models are being applied to an ever wider and more

varied range of linguistic domains. Collecting and curatingtraining sets for each different

domain is prohibitively expensive, and at the same time differences in vocabulary and

writing style across domains can cause state-of-the-art supervised models to dramatically

increase in error.

The first part of this thesis describes structural correspondence learning (SCL), a

method for adapting linear discriminative models from resource-richsourcedomains to

resource-poortarget domains. The key idea is the use ofpivot features which occur fre-

quently and behave similarly in both the source and target domains. SCL builds a shared

representation by searching for a low-dimensional featuresubspace that allows us to accu-

rately predict the presence or absence of pivot features on unlabeled data. We demonstrate

SCL on two text processing problems: sentiment classification of product reviews and

part of speech tagging. For both tasks, SCL significantly improves over state of the art

supervised models using only unlabeled target data.

In the second part of the thesis, we develop a formal framework for analyzing domain

adaptation tasks. We first describe a measure of divergence,theH∆H-divergence, that

depends on the hypothesis classH from which we estimate our supervised model. We

then use this measure to state an upper bound on the true target error of a model trained to

minimize a convex combination of empirical source and target errors. The bound charac-

terizes the tradeoff inherent in training on both the large quantity of biased source data and

the small quantity of unbiased target data, and we can compute it from finite labeled and

unlabeled samples of the source and target distributions under relatively weak assump-

tions. Finally, we confirm experimentally that the bound corresponds well to empirical

target error for the task of sentiment classification.
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Chapter 1

Introduction

Statistical language processing tools are being applied toan ever wider and more varied

range of linguistic data. Researchers and engineers are using statistical models to organize

and understand financial news, legal documents, biomedicalabstracts, and weblog entries,

among many other domains. Many of these models are supervised at parameter estimation

time – A human annotator must create a training set of examples for the relevant task.

Because language varies so widely, collecting and curating training sets for each different

domain is prohibitively expensive. At the same time, differences in vocabulary and writing

style across domains can cause state-of-the-art supervised models to dramatically increase

in error. Domain adaptation methods provide a way to alleviate the problem of creating

training sets for different domains by generalizing modelsfrom a resource-richsource

domain to a different, resource-poortargetdomain.

This thesis investigates both the empirical and theoretical aspects of domain adap-

tation. The first half describes structural correspondencelearning (SCL), a method for

domain adaptation which uses unlabeled data to induce correspondences among features

from different domains. SCL first learns a mapping from the high-dimensional feature

spaces commonly used for text processing to a low-dimensional real-valued space. Cor-

respondences are encoded implicitly in the structure of this low-dimensional space. We
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demonstrate SCL for two text processing tasks: part of speechtagging and sentiment clas-

sification. For each of these tasks, SCL significantly reducesthe error of a state-of-the-art

discriminative model.

The latter half of this thesis focuses on characterizing theoretically the conditions un-

der which domain adaptation algorithms can be expected to perform well. We give a

formal definition of domain adaptation, and we use this definition to provide an upper

bound on the generalization error of a source model in a new target domain. Our theory

illustrates how the right feature representation is crucial for domain adaptation, and we

show that for both part of speech tagging and sentiment classification, the feature space

learned by SCL results in smaller values for the bound on error. Finally, we extend our

theory to the case in which we have small amounts of labeled target training data. In this

setting, we give a bound that explicitly models the tradeoffthat arises from training on

both a large but biased source sample and a small but unbiasedtarget sample.

1.1 Supervised models

This thesis is about domain adaptation of statistical models for mapping an input text to

an output label. These models are called supervised becausewe train them by giving them

examples of input and output pairs. For example, we may consider a model which takes

as input a review of a particular product and produces as output a rating indicating how

much the reviewer liked the product. In this section we introduce linear discriminative

models, a common paradigm in supervised learning that has been especially successful

for text processing. Structural correspondence learning is designed to adapt linear models

to new domains, and the SCL algorithm itself involves training multiple linear predictors

on unlabeled data. Here we describe background for understanding SCL, including feature

representations, loss functions, optimization techniques, and generalization theory.

Many state-of-the art text processing systems use some formof linear discrimina-

tive modeling, and it has been a staple of speech and languageprocessing for several

2



Input

A horrible book,

horrible

Feature vectorx

a : 1.0

book : 1.0

computer : 0.0

dogs : 0.0

. . .

hilbert : 0.0

horrible : 2.0

Output choicesY

positive

negative

Model

argmaxy∈Y s(x, y)

Prediction

y∗

Figure 1.1: Schematic of a supervised model for classifying product reviews. Given an input

review of a book (far left), we first represent it as a feature vector.A supervised model scores

combinations of feature vectors and outputs (either positive or negative)and returns the top-scoring

label for this input (right).

decades. A complete discussion is well beyond the scope of this thesis, but we refer the

reader to Hastie et al. [34] for an introduction to supervised learning and to Manning

and Scḧutze [45] and Jelinek [38] for overviews of its use in naturallanguage process-

ing. Shawe-Taylor and Cristianini [58] is a good reference for support vector machines, a

particularly popular method for training and representinglinear models.

1.1.1 Feature representations for text

The first step in building a supervised model is to design features of the input which we

believe will be helpful in predicting the output. Let us return to our previous example.

What features of a product review are useful for predicting a potential rating? It turns out

that for this problem, the presence or absence of particularwords in the text are excellent

features. For instance, the presence of the word “horrible”is good indication that the

3



document expresses negative sentiment and should get a low rating.

Once we have decided on the features to use, we represent eachinput instance as a

vector, where each dimension in the vector corresponds to a particular feature (figure 1.1).

Such vectors are typically high-dimensional and sparse. Ifwe use words as our feature

representation, then the dimensionality of an input feature vector is the size of the vocab-

ulary (in the tens or hundreds of thousands). For a particular document, however, only a

few words will be present. In figure 1.1, for example, only thedimensions corresponding

to “a”, “book” and “horrible” have non-zero value.

1.1.2 Linear discriminative models

A supervised model chooses a feature vectorx and potential outputy using a scoring

function s(x, y). Finding the best output amounts to choosing the outputy∗ which has

the highest score (right-hand side of figure 1.1). Linear models compute the scores(x, y)

of an input and output pair using as a linear function of a weight vectorw. The simplest

such models that we will address here are binary linear classification models. In this case,

Y = {−1, 1} and

sw(x, y) = y(w′
x) ,

wherew is a weight vector andw′
x is the inner product ofw with x. Sincey ∈ {−1, 1},

the top-scoring labely is the same as the sign of the inner product

y∗ = argmax
y

y(w′
x) = sgn(w′

x) .

Aside from providing an important foundation on which more sophisticated linear models

are built, binary linear predictors play an especially important role in this thesis. As we

shall see in chapter 2, the SCL algorithm itself involves training hundreds or thousands of

binary predictors.
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Multiclass and structured linear modeling

For many learning problems, the set of possible labelsY is much larger than two. For

example, we apply our domain adaptation techniques to the task of part of speech tagging

(chapter 3), where the goal is to assign a sequence of part of speech tags to the words in

a sentence. In this case, the number of possible sequences grows exponentially with the

length of the sentence. For problems with more than two labels, we use a fixed mapping

ζ(x, y) to create a sparse vector representation of input-output pairs1. As before, we

compute the score using an inner product

sw(x, y) = w
′ζ(x, y) .

The model then outputs the top-scoring label

y∗ = argmax
y

w
′ζ(x, y) .

For a fixed small set of labels, as in standard multiclass classification, we can createζ(x, y)

by concatenating the appropriate label with each feature. This gives us a newζ vector of

dimension|Y|d, whered is the dimensionality of the original feature vectorx, defined as

follows:

ζ(x, y)i =







1, i = dy + j, for somej < d and xj = 1

0, otherwise
.

For learning problems such as part of speech tagging, natural language parsing, and

machine translation, the number of labels is large enough that treating labels as atomic

units is both statistically and computationally infeasible. In these tasks the labels them-

selves have internal structure that we can take advantage ofin designing the mapping

ζ(x, y). Because of this, models which solve these tasks are often referred to as structured

predictors [42, 57, 60]. Methods for structured predictionmust factor problems so as to be

able to perform computationally efficient inference and to be able to make accurate pre-

dictions. When we investigate adapting part of speech taggers, we show how to integrate

1When we need to distinguish this vector from the input featurerepresentation of the previous section,
we will refer to this vector as theζ vector.
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SCL with a structured linear predictor (chapter 3), but inference and learning algorithms

for structured prediction are not central to the ideas of this thesis. For a good introduction

to structured prediction problems and algorithms, we referto Taskar [60].

1.1.3 Parameter estimation techniques

In section 1.1.2 we showed how to choose the best output for a particular input, given that

we already have a linear model in hand. In this section we briefly review techniques for

finding a linear model (parameterized by the weight vectorw) given a training sample

{(xi, yi)}
N
i=1. We will refer to these techniques as parameter esimtation or training proce-

dures. Let the error of a linear modelw for a particular instance(x, y) be the 0-1 indicator

variable

[

argmax
y∈Y

sw(x, y) 6= y

]

=







0, argmaxy∈Y sw(x, y) = y

1, argmaxy∈Y sw(x, y) 6= y
.

A natural criterion forw is to choose the modelw∗ which has minimum training error

w
∗ = argmin

w

1

N

N
∑

i=1

[

argmax
y∈Y

sw(xi, y) 6= yi

]

.

Unfortunately, finding the minimum error linear model is computationally intractable,

even to approximate [11]. Instead we choose to minimize a convex upper bound on the

error, also called a loss function. For binary classification, a loss function maps the score

that a model gives to an instanceyw′
x to a number indicating the penalty we assign to the

model for scoring an instance this way. The error function itself is a kind of loss, where

we assign a penalty of one to an instance whose score is less than zero and a penalty of

zero to an instance whose score is greater than or equal to zero. In this thesis, we will

minimize a regularized training loss

argmin
w

1

N

N
∑

i=1

L(yiw
′
x) + λ||w||22 . (1.1)

6



(a) Graph of loss functions versus score of
a linear model for binary prediction

−2 −1 0 1 2

0

1

2

3

4

5

6

Score

Lo
ss

Error
Hinge loss
Huber loss

(b) Stochastic gradient descent algorithm
for parameter estimation of a linear model

Input: labeled data{(xt, yt)
T
t=1}

Output: A weight vectorwT

for t = 0 . . . T − 1

w
t+1 ← w

t −

η
(

δ
δwL(yt+1w

′
xt+1)|wt + 2λw

t
)

end

Figure 1.2: (a) The error function together with two loss functions. The hinge loss is

a continuous upper bound on error, and the Huber loss is a differentiable upper bound.

(b) The stochastic gradient descent algorithm [69] for solvingequation 1.1

This minimization problem captures in general form many common paradigms for training

linear classifiers. For example, using the hinge loss

L(u) =







−(u− 1), u < 1

0, u ≥ 1

yields a 2-norm support vector machine [58, 69]. The hinge loss is continuous but not

differentiable. In order to directly apply unconstrained gradient minimization methods,

we minimize a differentiable version, known as the Huber loss2.

L(u) =



















−4u, u < −1

(−u + 1)2, −1 ≤ u < 1

0, u ≥ 1

Figure 1.2(a) depicts the error, the hinge loss, and the Huber loss as a function of the

model score.
2Not to be confused with the Huber loss for regression, which we do not use in this thesis.
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There are many choices of algorithm for finding aw
∗ which solves equation 1.1, and

a thorough discussion of optimization techniques in machine learning is once again well

beyond the score of this thesis. We follow Zhang [69] and use stochastic gradient descent.

Stochastic gradient descent is an online algorithm parameterized by a learning rateη.

Figure 1.2(b) is a description of the algorithm.

Parameter estimation for multiclass and structured modelswith MIRA

Parameter estimation for multiclass and structured linearpredictors is more complex than

for binary classification, but many of the basic aspects are similar. In this thesis, when

we solve structured prediction problems, we use the margin infused relaxed algorithm

(MIRA) [22]. MIRA is an online algorithm which updates the parameter vector each in-

stance to give the minimum change to the weight vector (as measured by theL2 norm) to

separate the correct instance from the top-scoring incorrect instance by a margin. Cram-

mer et al. [22] give a more complete description of the MIRA algorithm. The application

of MIRA to structured prediction is strongly influenced by thework of Collins [19], who

described an application of the perceptron to structured prediction. For a more general

discussion and comparison of optimization techniques for structured predictors, we again

refer to Taskar [60].

1.1.4 Generalization

In section 1.1.3, we suggested to estimate the parameters ofa linear model by finding a

weight vectorw∗ which minimizes a convex upper bound on the training error. We are

not really interested in the training set error, however. Wewant to find a model which

generalizes well to a new unseen test set. This section introduces elements of statistical

learning theory which will allow us to give upper bounds on the expected test set error of a

model in terms of its training set error. The concepts we discuss here provide an important

basis for chapter 4, where we give theoretical results for generalization to new domains.

Once again, we focus on binary classification and are necessarily brief, but we refer to
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Kearns and Vazirani [41] and Anthony and Bartlett [6] for excellent introductions to the

concepts of learning theory.

As before, we denote byx ∈ X a feature vector in feature space. Formally, suppose

that instances are drawn from a probability distribution(x, y) ∼ D. For a particular

hypothesish : X → Y, we define the binary indicator variable

[h(x) 6= y] =







0, h(x) = y

1, h(x) 6= y
.

The generalization error of a model is the expected error rate under distributionD

εD(h) = E(x,y)∼D [h(x) 6= y] .

Suppose that we choose a hypothesis from a class of finite cardinality H. In this case,

we may relate training and generalization error via Hoeffding’s inequality [35] and the

union bound. For a training sample{xi, yi}
N
i=1 drawn fromD, with probability1− δ, for

everyh ∈ H,

εD(h) ≤
1

n

n
∑

i=1

[h(xi) 6= yi] +

√

2 log(2|H|)− log δ

n
. (1.2)

This result is a slight modification of theorem 2.3 in Anthonyand Bartlett [6]. It is an

example of what is known as a uniform convergence bound, since it shows that the training

set error converges (asN grows large) to the generalizatoin error uniformly for every

h ∈ H. Note that the size of the hypothesis class|H| governs the rate at which the bound

on training error converges to the generalization error.

A uniform convergence bound for linear models

Our linear models are parameterized by weight vectorsw ∈ R
d. The number of possible

weight vectors is clearly not finite, so the bound from equation 1.2 does not apply. We

may still state a uniform convergence result, however, through a measure of hypothesis

class complexity known as the Vapnik-Chervonenkis (VC) dimension [65]. For a given

training sampleS of sizeN , the number of possible unique partitions of the points into

9



two classes is2N . But note that for a given dimensiond and number of pointsN , not all

partitions can be modeled using a linear predictor. To see this, note that for three points in

two dimensions, we can model each of the eight possible partitions with linear classifiers3,

but for four points in two dimensions, we cannot model each ofthe 16 possible partitions

with binary linear classifiers. When we can model all possiblepartitions of a set of points

S with a hypothesis classH, we will say thatH shattersS.

For a hypothesis classH, the Vapnik-Chervonenkis dimension is the size of the largest

subsetS that can be shattered byH. For linear classifiers parameterized byw ∈ R
d, the

VC dimension isd + 1 [65, 6]. The VC dimension is a measure of the complexity of a

hypothesis class. With it in hand, we may prove the followinguniform convergence bound

for linear classifiers:

Let R
d denote the space of parameter vectors for linear classifiers. For a training sample

{xi, yi}
N
i=1 drawn fromD, with probability1− δ, for everyw ∈ R

d,

εD(w) ≤
1

n

n
∑

i=1

[sgn(w′
xi) 6= yi] + O

(
√

d log(N/d)− log(δ)

N

)

. (1.3)

Note thatd log(N/d) takes the place oflog(|H|) in the earlier uniform convergence bound.

In this bound, the larger the dimensiond of the weight vector, the slower the training error

converges to the generalization error.

As a final comment, we note that other measures of complexity can lead to significantly

tighter bounds than VC dimension, but the precise measure ofhypothesis class complexity

is not essential to the theory in this thesis. We chose the VC dimension for its ease of

exposition. For margin-based measures of complexity we refer to Anthony and Bartlett

[6]. Shawe-Taylor and Cristianini [58] give a good introduction to data-dependent bounds

and the Rademacher measure of complexity [8].
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(a) Book Review (b) Kitchen Appliance Review
Running with Scissors: A Memoir

Title: Horrible book, horrible.

This book was horrible. Iread half of it,

suffering froma headachethe entire time,

and eventually i lit it on fire. Oneless copy

in the world...don’t waste your money. I

wish i had the time spent reading this book

back so i could use it for better purposes.

This book wasted my life

Avante Deep Fryer, Chrome & Black

Title: lid doesnot work well...

I love the way the Tefal deep fryer cooks,

however, I amreturning my second one

due to adefectivelid closure. The lid may

close initially, but after a few uses it no

longer stays closed. I will not be purchas-

ing this one again.

Figure 1.3: Sentiment classification example: reviews of books (source) and kitchen appli-

ances (target) from Amazon. Bold words and bigrams are at least five times more frequent

in one domain than in the other.

1.2 Adapting supervised models to new domains

In the previous section, our training methods for linear models minimized a convex upper

bound on the error. We motivated these methods by appealing to uniform convergence

theory: For large training samples, the empirical error is areasonable proxy for the gen-

eralization error. In many realistic applications of supervised techniques, however, the

training data is drawn from asourcedistribution and the testing data is drawn from a dif-

ferenttargetdistribution. Because of this, we cannot expect a large sample of our source

data to allow us to build a good target model. In fact, as we shall see in chapter 3, realistic

differences in domains can cause discriminative linear classifiers to more than double in

error.

Figures 1.3 and 1.4 illustrate the differences that can appear across domains for sen-

timent classification and part of speech tagging, respectively. We chose these examples

in particular because for each one, a linear predictor trained the source domain mis-labels

3as long as the three points are not co-linear

11



(a) Wall Street Journal

DT JJ VBZ DT NN IN DT JJ NN

The clash is a sign of a new toughness

CC NN IN NNP POS JJ JJ NN .

and divisiveness in Japan ’s once-cozy financial circles .

(b) MEDLINE

DT JJ VBN NNS IN DT NN NNS

The oncogenic mutated forms of the ras proteins

VBP RB JJ CC VBP IN JJ NN

are constitutively active and interfere with normal signal

NN .

transduction .

Figure 1.4: Part of speech tagging example: sentences from the Wall Street Journal

(source) and MEDLINE (target). Bold words are at least five times more frequent in

one domain than in the other.

the target instances. In both cases, the source and target domains have very different vo-

cabularies, and each new target vocabulary item corresponds to a new feature which is

unobserved in the source domain. In the sentiment example, aclassifier trained on books

incorrectly identifies the “tefal deep fryer” review as positive, in part because it has never

observed the negatively-skewed featuresdefective, not work, andreturning.

In the part of speech example, a tagger trained on the Wall Street Journal (WSJ) mis-tags

signal as an adjective, rather than correctly as a noun. The wordsignal is a frequent

noun in the biomedical domain, even though it is relatively rare in the Wall Street Journal.

Furthermore,transduction is even more rare in the Wall Street Journal, making this

instance particularly hard to disambiguate.
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(a) Sentiment Classification

domain book reviews kitchen reviews

positive fascinating, engaging areperfect, yearsnow
correspondences must read, reader excellentproduct, abreeze

negative plot, # pages, theplastic, poorlydesigned
correspondences predictable, readingthis awkwardto, leaking

(b) Part of Speech Tagging

domain WSJ MEDLINE

adjectival political, short-term metastatic, neuronal
correspondences pretty, your functional, transient

nominal company, transaction receptors, assays
correspondences investors, officials mutation, lesions

Figure 1.5: Corresponding features from different domains for both tasks. These features

fulfill similar roles across domains. For instance, “predictable” and “leaking” both express

negative sentiment.

1.2.1 Learning feature correspondences

One recurring theme in text processing is the redundancy of features. The bold features

in both figure 1.3 and figure 1.4 vary significantly in frequency across domains, but for

both tasks, many unique target features have correspondingcounterpart source features

(figure 1.5). Suppose that we were given these correspondences. Intuitively, we should

be able to use them to convert an effective source model into an effective target model by

representing the weight for each target feature as the appropriate combination of source

feature weights.

Pivot features and unlabeled data

Structural correspondence learning (SCL) is a method for learning these correspondences

automatically from unlabeled data. The key concept behind SCL is the notion ofpivot
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(a) Examples of pivots for sentiment classification. In the target domain (kitchenappliances)
all pivots co-occur with the feature‘‘defective’’.

book reviews kitchen reviews

The book is so repetitive that Donot buy the Shark portable steamer. . . .
I found myself yelling. . . . I The trigger mechanism is defective
will definitely not buy another

A disappointment. . . . Ender was the very nice lady assured me that that
talked about for #pages altogether they must have been a defective set. . . .

What adisappointment!

It’s unclear. . . . It’s Maybe mine was defective. . . .
repetitive and boring The directions wereunclear

(b) Examples of pivots for part of speech tagging. In the target domain (MEDLINE)
all pivots co-occur with the feature‘‘current word is <signal>’’.

WSJ MEDLINE

of investmentrequired deliver the signalrequired

of buy-outsfrom buyers stimulatory signalfrom

go to jail for violating essential signalfor

Table 1.1: Examples of pivots in both domains, together withthe contexts in which they

occur

features. Pivot features are features which occur frequently and behave similarly in both

the source and target domains. The right column of table 1.1(a) shows pivot features for

kitchen appliances that occur together with the word “defective”. The pivot features “not

buy”, “disappointment”, “unclear” are good indicators of negative sentiment, regardless of

domain. Similarly, the right column of table 1.1(b) shows examples of PoS-tagging pivot

features for WSJ and MEDLINE that occur together with the word“signal”. In this case

our pivot features are all of type<the token on the right>. Note that “signal” is

unambiguously a noun in these contexts. Adjectives rarely precede past tense verbs such

as “required” or prepositions such as “from” and “for”.

We now search for occurrences of the pivot features in the source domains (book re-

views and WSJ). The left column of tables 1.1(a) and (b) show some words that occur

14



together with the pivot features in the source domains. In the case of sentiment classifica-

tion, “repetitive”, “# pages”, and “boring”. are all common ways of expressing negative

sentiment about books. In the case of part of speech tagging,“investment”, “buy-outs”,

and “jail” are all common nouns in the WSJ.

For each task structural correspondence learning uses co-occurrence between pivot and

non-pivot features to learn a representation under which features from different domains

are aligned. Note that we do not require labels to estimate these co-occurrences. This step

only requiresunlabeledsource and target samples. Once we have this representation, we

can use it to train a classifier from source data that is effective in the target domain as well.

Chapter 2 describes in detail methods for choosing pivot features, learning the underlying

representation, and using that representation in discriminative models.

1.2.2 Generalization to new domains

In section 1.1.4, we showed how a model can generalize from a training sample drawn

from a distributionD to another unseen test sample fromD. For domain adaptation, how-

ever, this assumption breaks down. Our source training datais drawn from one distribution

DS, but we need our model to generalize to target data drawn froma different distribu-

tion DT . Because of this we cannot use standard generalization theory to prove a bound

analogous to equation 1.3.

Under what conditions onDS andDT can we expect to be able to train on a sample

fromDS and perform well on a sample fromDT ? If DS andDT are arbitrary probability

distributions on(x, y), then we cannot expect to learn an effective model without any

labeled target data. To see this note that for binary classification, we may chooseDS and

DT to have the same marginal distribution on instances but exactly opposite distributions

on labels. That is,

PrDT
[x] = PrDS

[x]

PrDT
[y|x] = 1− PrDS

[y|x]

wherePrD [·] is the density (mass) function for distributionD. Now the model we choose
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by minimizing source error converges in the limit to the worst possible target model.

Suppose we constrainDS andDT such that there exists some classifierh∗ ∈ H which

has low error on bothDS andDT . More precisely, letκ be defined as

κ = min
h∈H

εDS
(h) + εDT

(h) .

Then we constrainDS andDT such thatκ is small. This captures intuitively the assump-

tion that we make when building a model for domain adaptation. For example, on our

product reviews task, we expect there exists a single model which can identify reviews of

both books and kitchen appliances as being positive or negative, even if finding it using

only source data is difficult. With this assumption in hand, we can prove a bound on target

error of the form

εDT
(h) ≤ εDS

(h) + κ + div(DS,DT ) .

The term div(DS,DT ) denotes the divergence between the source and target marginal

distributionsPrDS
[x] andPrDT

[x] on instances. In chapter 4, we show how to exploit

the structure of a hypothesis space to derive a divergence between distributions that is

computable from finite samples ofunlabeleddata. We call this divergence theH∆H-

divergence, and for linear models, it is closely tied to feature representations we use. We

use this fact to prove that structural correspondence learning finds a feature representation

under which source and target distributions are close. TheH∆H-divergence also plays a

key role in our theory of learning from labeled source data and small amounts of lableled

target data.

1.3 Thesis overview

Structural correspondence learning.Chapter 2 describes in detail the structural corre-

spondence learning algorithm. We first introduce the structural learning paradigm of Ando

and Zhang [3] and show why it is well-suited for domain adaptation. Then we discuss the

details of SCL, including methods for selecting pivot features, and the hyperparameters
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necessary for combining SCL features with standard text features. Finally, we relate struc-

tural learning and SCL to other methods for using unlabeled data. We show that structural

learning and SCL are closely related to the statistical method of canonical correlations

analysis (CCA) [36], which recent theoretical work [40] has shown can be effective for

semi-supervised learning. Aside from CCA, we also examine several other methods for

using unlabeled data, including graph regularization, bootstrapping, and instance weight-

ing, and for each we briefly discuss their feasibility for domain adaptation.

Adapting linear discriminative models with SCL. Chapter 3 illustrates the use of SCL

on our sentiment classification and part of speech tagging tasks. We first demonstrate that

SCL consistently makes significant reductions in error, evenwithout any target labeled

data. Then we show how to use small amounts of target data together with SCL to achieve

even greater reductions in error. Finally, we examine in detail the basis found by SCL.

Learning bounds for domain adaptation. Chapter 4 develops a formal framework for

analyzing domain adaptation tasks. We first show how the divergence between two do-

mains can be computed using finite samples of unlabeled data.We use this divergence

to bound the target generalization error of a model trained in the source domain. This

bound depends closely on the feature representation of our model, and in particular the

representation learned by SCL gives much lower values for thebound than the standard

representation. Finally, we give a uniform convergence learning bound on the target gen-

eralization error of a model trained to minimize a convex combination of empirical source

and target errors.
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Chapter 2

Structural correspondence learning

Structural correspondence learning (SCL) is an algorithm for domain adaptation. It learns

a shared representation for both source and target domains from unlabeled source and

target data. SCL is a variant of the structural learning paradigm of Ando and Zhang [3].

This semisupervised method uses unlabeled data to discovera predictive linear subspace

of the original hypothesis space. Section 2.1 describes structural learning, and section 2.2

introduces the SCL algorithm itself. The key idea of SCL is to exploit pivot features which

are common to both domains. We describe methods for choosingeffective pivots, as well

as hyperparamters used for combining SCL with standard supervised learning methods.

The latter part of this chapter is devoted to exploring the connection between SCL and

other semi-supervised learning techniques. By dividing up the feature space into pivot and

non-pivot features, structural learning and SCL are effectively exploiting “multiple views”

of the input data. Recent theoretical work has examined canonical correlation analysis

(CCA) [36] to learn a norm for semi-supervised multi-view regression [40]. We show that

structural learning and SCL are closely related to CCA, and we discuss the implications of

this for domain adaptation. Finally, we briefly review othermethods for using unlabeled

data and discuss their suitability for domain adaptation.
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2.1 Structural learning

Supervised learning methods find a hypothesis which generalizes well from a labeled

training set to new data. For the linear models explored in this thesis, the space of hy-

potheses consists of linear functions of the features present in an instance. Thus the com-

plexity of the hypothesis space is directly related to the size of the feature space. Strucutral

learning [3] aims to learn a new, reduced-complexity hypothesis space by exploiting reg-

ularities in feature space via unlabeled data. For text these regularities come in the form

of lexical features that function similarly for prediction. For instance, prepositions such as

“with”, “on”, and “in” all are likely to precede noun phrases. Recognizing this is helpful

for part of speech tagging.

Structural learning characterizes feature space regularities through “auxiliary prob-

lems” which are carefully chosen using knowledge about the supervised task. Structural

learning finds a linear subspace of the original hypothesis space, where all of the auxiliary

problems can be solved well using predictors from this subspace. If this new hypothesis

space is much smaller than the original, but contains an equally accurate best hypothesis,

we may expect to achieve better accuracy for smaller amountsof data, as compared to the

original hypothesis space.

2.1.1 Finding good hypothesis spaces

The main task in supervised classification is to find a predictor mapping an input (here we

assume vector)x to an output labely. In most formulations of this problem we select this

predictor from a hypothesis spaceH. Predictor goodness is evaluated using a loss function

which measures the discrepancy between the output of a labeling predictorf(x) and the

associated correct labely. For a distributionD on pairs(x, y), the optimal predictor in the

hypothesis classH is

f̂ = argmin
f∈H

ED (L(f(x), y)) .
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For realistic problems, we do not have the true distributionavailable to us, but only a finite

sample. One method for choosingf givenH is the method of regularized empirical risk

minimization. For a sample of sizeN , we solve the optimization problem

f̂ = argmin
f∈H

N
∑

i=1

1

N
L (f(xi), yi) + ||f ||22 .

In semisupervised learning, in addition to our labeled sample, we also are endowed

with a large amount of unlabeled data. The basic idea behind structural learning is to

learn a hypothesis classHΦ using the unlabeled data, whereΦ parameterizes the space of

hypothesis classes. Then we choose our predictor fromHΦ. If the hypothesis class we

learn is good, then we expect to be able to choose a better function f from our labeled

sample.

2.1.2 Shared structure via auxiliary problems

From now on we will refer to the classification problem for which we have labeled data

as thesupervisedproblem. The key idea in structural learning is the design ofauxiliary

problems which meet the following three criteria:

1. Auxiliary problems are closely related to the supervisedproblem. For instance, all

the auxiliary problems we discuss here will use the same feature set as the super-

vised problem.

2. Auxiliary problems are as different as possible from one another.

3. Auxiliary problems do not require labeled data to train.

For example, suppose our supervised problem is part of speech tagging, where each in-

stance consists of features over word triples, and the task is to give the part of speech tag

of the middle word. The label forthe insightful paper is adjective, the

part of speech tag forinsightful. One set of appropriate auxiliary problems would

be to predict the identity of the left word from features on the middle and right words. For
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each instance we can create one thousand left word binary classification problems, one for

each of the one thousand most frequent left words. For more detail on auxiliary problems,

we refer the reader to section 2.2.1 which discusses the pivot features we use for SCL.

Since auxiliary problems require only unlabeled data to create, we can train reliable

auxiliary predictors from the unlabeled data. If the auxiliary problems are diverse, we

can further say that the auxiliary predictors span the spaceof predictor functions(This

will be made more precise in the next section). Intuitively,since we designed the auxiliary

problems to be similar to the supervised problem, any commonstructure they have is likely

to also be shared by a good supervised predictor. Thus if we can discover a goodpredictor

subspacefrom our auxiliary predictors, this subspace can serve as our hypothesis space.

2.1.3 Joint empirical risk minimization

Suppose we createm auxiliary problems, where thèth auxiliary problem hasN` in-

stances. Letxi
` ∈ R

V be theith instance for thèth auxiliary problem. Ando and Zhang

[3] suggest to choose the linear predictor subspace parameterized by the matrixΦ ∈ R
k×V

which minimizes the regularized empirical risk of all the auxiliary problems. Each auxil-

iary predictor is characterized by two weight vectors:w` on the original feature space and

v` on the feature space that has been transformed via the mapping Φ.

[

{ŵ`, v̂`}, Φ̂
]

= argmin
w`,v`,Φ

m
∑

`=1

(

1

N`

N
∑̀

i=1

L
(

(w` + Φ′
v`)

′
x

`
i , y

`
i

)

+ λ||w`||
2

)

s.t. ΦΦ′ = Ik×k .

Ando and Zhang [3] call this optimization criterion joint empirical risk minimization.

Note thatw` is regularized, butv` is not. This will play an important role in the derivation

of the the alternating structural optimization algorithm for minimizing the joint empirical

risk. After the derivation of the basic algorithm in section2.1.3, we discuss the the actual

implementation that Ando and Zhang [3] use in their experiments in section 2.1.4.
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Alternating structural optimization

In order to derive the alternating structural optimization(ASO) algorithm, we first intro-

duce a change of variables. For each auxiliary problem we write u` = w` − Φ′
v` . Now

we can rewrite the optimization problem as

[

{û`, v̂`}, Φ̂
]

= argmin
u`,v`,Φ

m
∑

`=1

(

1

N`

N
∑̀

i=1

L
(

u
′
`x

`
i , y

`
i

)

+ λ ||u` − Φ′
v`||

2

)

s.t. ΦΦ′ = Ik×k,

and at the optimal solution we can recoverû` = ŵ` − Φ′
v̂` . Now we come to the basic

formulation of the ASO:

1. Fix (Φ,v) and optimize with respect tou .

2. Fix u and optimize with respect to(Φ,v) .

3. Iterate until convergence.

Note that in step1, the optimizations for each auxiliary problem decouple, and we can

solve each one separately. These are just standard empirical risk minimization problems,

and if the loss functionL is convex, then we can solve them with any minimization tech-

nique. Ando and Zhang [3] suggest stochastic gradient descent. We focus now on step 2,

which for fixedu` = û` yields the optimization problem

[

{v̂`}, Φ̂
]

= argmin
{v`},Φ

m
∑

`=1

λ ||û` − Φ′
v`||

2 s.t. ΦΦ′ = Ik×k.

For fixedΦ, we have a least squares problem forv

min
v`

||û` − Φ′
v`||

2
.

Differentiating with respect tov and setting to 0 reveals

0 = 2Φ (û` − Φ′
v`) .
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Input: labeled data{(xt, yt)
T
t=1},

unlabeled data{xj}

Output: predictorf : X → Y

1. Choosem binary auxiliary problems,p`(x), ` = 1 . . .m

2. For ` = 1 to m

ŵ` = argminw

(

∑

j L(w · xj , p`(xj)) + λ||w||2
)

end

3. W = [ŵ1| . . . |ŵm], If Wi,` < 0, setWi,` = 0.

4. [U D V ′] = SVD(W ), Φ = U ′
[1:k,:]

5. Returnf , a predictor trained on



















xt

Φxi



 , yt





T

t=1











Figure 2.1: ASO algorithm as it is implemented in practice

Solving forv` we arrive at the solution̂v` = Φû . Finally, we can substitute this back into

the original minimization problem, yielding

Φ̂ = argmin
Φ

m
∑

`=1

λ ||û` − Φ′Φû`||
2 s.t. ΦΦ′ = Ik×k.

LetW = [u1, . . . ,um] be the matrix whose columns are the weight vectorsu. The solution

has the form

ΦΛ = WW ′Φ ,

with Λ diagonal. Together with the orthogonality constraint, we know that the columns of

Φ are eigenvectors of the covariance matrixWW ′. Thus we can also solve the optimiza-

tion problem above with a singular value decomposition.
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2.1.4 The ASO algorithm in practice

One could run the alternating structural optimization as described in the previous section

to find Φ, but in order to achieve the results that Ando and Zhang [3] report, we must

make several changes to the form of the algorithm. In this section, we briefly describe

these changes. The final, simpler algorithm is shown in figure2.1.

One iteration of optimization

The first change from the ASO algorithm as described in section 2.1.3 is that there is no

alternation. That is, we only need to run one iteration of (each step of) the optimization. In

practice there are far fewer parameters from the weight vectorsv` on the transformed fea-

ture space than from the weight vectorsw` on the original space. Thus theu` are unlikely

to change significantly in the later iterations. Since theu` do not change significantly,Φ

will not change significantly, either.

Running only one iteration allows us to simplify training theauxiliary predictorsu.

Since we are only running one iteration, and since we initializeΦ = 0
k×V , w` = 0, v` =

0 ∀`, we know thatu` = w`. Thus we can simply set the weight vectors by minimizing

the empirical risk with a quadratic regularization.

Only positive entries inW

The second important change to ASO is that when constructingthe matrixW whose

columns are the weight vectorsw`, we set all the negative entriesWi,` = 0 and compute

the SVD of the resulting sparse matrix. This serves two purposes. First, it saves space and

time. For a feature space of size 1 million and 3,000 auxiliary problems,W has 3 billion

entries. Since, as we will see in the next section, most auxiliary problems are of the form

“predict whether an adjacent word is<w>”, they have many more negative instances than

positive. Solving the sparse singular value decompositionthat results from setting these

entries to zero provides a significant speedup. Secondly, for many auxiliary problems

we really care about positive instances, but not negative instances. For example, when
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An example weight matrixW ,

where columns are auxiliary pre-

dictor weight vectors and rows are

features. The grayed block is the

submatrix for feature typeTk.

predictors
` = 1, . . . , m

T1
. . .

Tk

. . .

Tτ

[U D V ′] = SVD(WTk
)

ΦTk
= U ′

[1:h,:]

Figure 2.2: An illustration of block SVD by type, from Ando and Zhang [3].

predicting whether a word occurs, a positive instance givesus much more information.

Thus we can consider discarding the negative entries as discarding the “noisy” entries of

this matrix.

Dimensionality reduction by feature type

Ando and Zhang [3] also suggest an extension that computes separate singular value de-

compositions for blocks of weights corresponding to what they call “feature type”. Sup-

pose that for a tagging problem, we have three types of features: left words, middle words,

and right words. Ando and Zhang point out that these feature types are not homogenous

and should not necessarily be represented with the same projectionΦ. They suggest per-

forming an SVD just on the submatrix corresponding to a specific feature type (figure

2.2). Then, during supervised training and testing, the matricesΦT are applied to the

appropriate types separately, and the features are concatenated into a single vector.

Training a supervised model usingΦ

The final step of the algorithm (step 5 in figure 2.1) is to traina linear predictor on labeled

data. Notice that instead of completely replacing the hypothesis space, we augment the

original feature vectorx with Φx. In practice Ando and Zhang [3] suggest to train a single

linear predictor by minimizing the combined loss

argmin
w,v

(

∑

j

L(w′
xj + v

′Φxj, yj) + λ||w||2
)

. (2.1)
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We regularize the weight vectorw which multiplies the original feature vector, but not the

weight vectorv which multiplies the low-dimensional transformed featurevector. This

assymetric regularization encourages the model to use the low-dimensional representation

rather than the original high-dimensional representation, but it allows the original feature

representation if necessary.

Applications of ASO

A complete discussion of the tasks to which ASO has been applied is beyond the scope of

this thesis, but in addition to Ando and Zhang [3], we refer the reader to Ando [4] for a

discussion of its application to word sense disambiguation. Ando et al. [5] applied ASO

for information retrieval, and more recently Liu and Ng [44]applied ASO to the task of

semantic role labeling.

2.2 The SCL algorithm

Domain adaptation methods encounter different problems from the semi-supervised learn-

ing setting which motivates structural learning. When adapting from one domain to an-

other, we may have a large number of source domain training instances, but because the

target distribution is different from the source, we still can’t estimate good statistics for

it. Structural correspondence learning (SCL) operates on labeled source training data and

unlabeled source and target training data. The goal of SCL is to design a small number

of features which are useful predictors inboth the source and the target domains. The

most important part of SCL is the selection of pivot features.Pivot features correspond to

the auxiliary problems of structural learning, and they provide the mechanism for relating

the two domains. Choosing good pivot features is thus essential for good performance.

Section 2.2.1 gives examples of pivot features and discusses how to select them. As with

ASO, the final step of SCL is a singular value decomposition of apivot predictor matrix.

Applying the final projection matrixΦ to an instanceΦx results in a low-dimensional,
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Input: labeled data from source domain{(xt, yt)
T
t=1},

unlabeled data from both domains{xj}

Output: predictorf : X → Y

1. Choosem pivot features (section 2.2.1).

2. Createm binary prediction problems,p`(x), ` = 1 . . .m

3. For ` = 1 to m

ŵ` = argminw

(

∑

j L(w · xj , p`(xj)) + λ||w||2
)

end

4. W = [ŵ1| . . . |ŵm], [U D V ′] = SVD(W ) Φ = U ′
1:k,:

5. Returnf , a predictor trained on



















xt

Φxi



 , yt





T

t=1











Figure 2.3: SCL algorithm

dense feature representation.

The SCL algorithm is given in Figure 2.3. Step 1 of the algorithm is the choice of

pivot features. After this, the remainder of the algorithm is closely based on on ASO, and

because the two have so much in common, we refer the reader to section 2.1 regarding

details that are not present in this section.

2.2.1 Pivot features

Pivot features in SCL play the same role as auxiliary problemsin ASO. They should

occur frequently in the unlabeled data of both domains, since we must estimate their co-

occurrence with non-pivot features accurately. At the sametime, they must also be suffi-

ciently predictive for the supervised task, since we will build a representation using them.

Pivots that don’t meet both of these criteria cannot help us learn a good representation for
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adaptation.

Pivot features for sentiment classification

Sentiment classification is the task of labeling each document with whether or not it ex-

presses positive or negative sentiment. We use the standardbag-of-words representation,

where the features are words and bigrams. Each word is weighted by its term frequency

and the values are normalized sum to one for each document. Pivot features are features

which occur in more thank documents in both source and target domains. Then, for each

document, we create a pivot predictors for problems of the form “Does the pivot

feature <w> occur in this document?”. From table 1.1(a), we can create

the pivot problem “Does the bigram <not buy> occur in this

document?”, for example. When predicting a particular pivot we remove this feature

from the feature vector (or equivalently, always give it 0 weight).

Pivot features for part of speech tagging

Part of speech tagging is a sequence labeling problem with many heterogeneous features.

Given a sentence, the task of a part of speech tagger is to label each word with its gram-

matical function. The best part of speech taggers encode a sentence label as a chain-

structured graph [53, 20, 62]. In this formulation, the partof speech label factors along

the cliques of the graph. We will design pivot features for individual cliques and the input

features associated with them. Consider the edge ending withthe tag for “signal” in

the phrase with “normal signal transduction” (The correct label for this edge

is JJ-NN). We create pivots from left, middle, and right words that occur more thank

times in both corpora. Then we create pivot predictors for problems of the form “Is

the left/middle/right word for this edge <w>?”. From table 1.1(b),

we can create the pivot problem “Is the right word for this edge

<required>?”. When predicting a left word, we remove all features relatedto that

word from the input feature vector.
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Pivot predictors and correspondences

Each pivot predictor implicitly aligns features from separate domains. For example, if non-

pivot features from both the source and target domains are both highly predictive for the

binary problem “Is the right word for this edge <required>?”, then

after step 3 of SCL (figure 2.3), they will both have weights in the linear classifier which

solves this problem. If two non-pivot features have high weights across many pivot pre-

diction problems, then we have significant reason to believethey should correspond. In

step 4, when we perform the SVD on the weight matrix, these features will have a similar

representation in the low dimensional basis.

Choosing pivot features

We choose frequent features to function as pivots, and as we shall see, this often results

in good representations for domain adaptation. But up to now,we have not chosen pivots

by explicitly taking into account the supervised problem we’d like to perform. While we

do not have target labeled data, we can potentially make use of a large amount ofsource

labeled data to select pivots which are more targeted at the underlying supervised learning

problem. A simple way to do this is to score a featurex
i based on the conditional entropy

of y givenx
i:

H(Y |xi) = −

(

log
c(xi, +1)

c(xi)
+ log

c(xi,−1)

c(xi)

)

.

Herec(xi) indicates the empirical count of featurexi, andc(xi, ·) indicates the joint em-

pirical count of that feature with a particular label. Section 3.1.3 explores results using

SCL with pivots selected using conditional entropy.

2.2.2 Feature normalization and scaling

Section 2.1.4 describes the version of ASO that Ando and Zhang [3] apply in practice. In

this section, we list and further address two practical issues beyond those mentioned in

Ando and Zhang [3]. When combining dense features (from the projection underΦ) and
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standard sparse features, we need to normalize and scale thedense features for use with

standard optimizers.

Centering and normalization. When we receive a new instancex, we perform the

projectionΦx, yieldingk new real-valued features. For each of these features, we center

it by subtracting out the mean on the training data. Then we normalize each feature to

have unit variance on the training data. This is especially important for supervised tasks

with multiple feature types. Since the projections are orthonormal, projections for feature

types such as bigrams tend to have much smaller values (and correspondingly small vari-

ance), whereas projections for feature types such as prefixes and suffixes have much larger

values. These differences in feature values make it difficult to use online and stochastic

optimization techniques effectively.

Scaling. The sparse features that we use for standard text processinghave an intrinsic

scale. For bag-of-words representations of documents, ourrepresentation requires that the

feature values for each instance sum to 1. For the binary representations we use in part

of speech tagging, the feature values for each instance sum to a number much larger than

1. The real-valued features, however, all have unit variance after normalization. Because

of this, we scale the values of the real-valued features using a single scaling factorαΦx,

which we set on heldout data.

2.3 ASO and SCL as multiple-view learning algorithms

Structural learning and SCL model the inherent redundancy intext features. For sentiment

analysis, this redundancy comes in the form of multiple words used to express positive

or negative sentiment. For part of speech tagging, this comes in the form of orthographic

versus contextual sources of information. Many times, the orthography of a word provides

important information about its part of speech. Similarly,the context in which a word

appears also can provide information.

One way to analyze this feature redundancy is to split the feature space into multiple
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“views” [17]. Learning in the two views model proceeds by training separate classifiers for

each view and requiring that they “agree” on the unlabeled data [26, 1, 2, 29, 55]. In this

section, we show how to relate ASO and SCL to new theoretical work on using canonical

correlation analysis for multiple view learning [36, 40]. We show that a variant of the

ASO optimization problem is equivalent to the optimizationsolved by CCA. Kakade and

Foster [40] give simple conditions under which the CCA-learned feature space allows for

faster convergence to optimal linear regression parameters than the original feature space.

While these conditions are insufficient to give a complete theory of domain adaptation

with SCL, they provide intuitions about when SCL can succeed.

2.3.1 Canonical correlation analysis

Let X ∼ D be a random variable which is divided into two views. We will write X
(1)

andX
(2) to denote the portions ofX that are specific to each view. Note thatD is a joint

distribution on both views. Canonical correlation analysisfinds two sets of basis vectors

such that for allk, the projections ofX(1) andX
(2) onto the firstk bases are maximally

correlated [36, 33]. LetC be the joint covariance matrix for
(

X
(1),X(2)

)

C = Ex∼D [xx
′] .

We may writeC in the block form

C =





C11 C12

C21 C22



 ,

whereC11 = Ex(1)∼D

[

x
(1)

x
(1)′
]

and likewise for the other blocks. Finally, we abuse

notation and writeC for a covariance matrix approximated from a finite sample. The

appropriate interpretation should be clear from context.

Let a∗
i andb

∗
i be theith canonical basis vectors found by CCA for views one and two,
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respectively.a∗
i andb

∗
i are the solutions to the following optimization problem:

argmax
ai,bi

a
′
iC12b

′
i

s.t. a
′
iC11ai = 1

b
′
iC22bi = 1

b
′
iC22bi = 1

∀j ≤ i a
′
iaj = 0

∀j ≤ i b
′
ibj = 0

∀j ≤ i a
′
ibj = 0

A complete derivation of the solution to this optimization is beyond the scope of this

thesis, but the optimization may be solved efficiently as an eigenvalue problem [33]. Let

C11 = R11R
′
11 be the Cholesky factorization ofC11, whereR11 is lower triangular. Then

the columns ofA are the solutions to

R−1
11 C12C

−1
22 C21R

−1′

11 aj = ρ2
aj . (2.2)

2.3.2 Multiple-view regression with CCA

Suppose we partition our feature space into two viewsX
(1) andX

(2). Intuitively, CCA

captures the maximum “agreement” that may be captured by linear transformations of the

two views. Kakade and Foster [40] show that for linear regression under the squared loss,

CCA provides a new norm for regularization. This norm can in turn lead to significantly

decreased complexity when compared with the original norm.This section is a brief

review of the Kakade and Foster result.

In the following derivation, letD be a joint distribution on pairs(x, y). We wish to

find the solution to the minimization problem

w
∗ = argmin

w
E(x,y)∼D

[

(w′
x− y)

2
]

.

For each viewν ∈ {1, 2}, we may also examine the minimum error regression using just
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the features in that view:

w
(ν)∗ = argmin

w(ν)

E(x(ν),y)

[

(

w
(ν)′

x
(ν) − y

)2
]

.

The assumption that Kakade and Foster make on the distribution D is that the optimal

regression from each view has low regret with respect to the optimal joint regression:

Ex(ν),y

[

(

w
(ν)∗′

x
(ν) − y

)2
]

− Ex,y

[

(

w
∗′
x− y

)2
]

≤ ε . (2.3)

This assumption does not involve a notion of independence between the two views. In fact,

the resulting bound holds even for completely dependent views. In contrast to previous

theories where the views were assumed to satisfy some notionof independence [17, 26, 1],

Kakade and Foster incorporate the amount ofcorrelationbetween the views as part of the

resulting bound.

With this assumption in hand, Kakade and Foster suggest the following procedure for

finding a good vectorw: Compute the canonical basis vectorsai andbi, the solutions

to CCA(x(1),x(2)). We give the regression procedure for view 1 (the proceduresfor the

two views are identical). Letρi indicate the correlation of the canonical basis projections

a
′
ix

(1)
i andb

′
ix

(2)
i . If we denote byA the matrix whose columns are the canonical basis

vectors for view 1, then define

x̂
(1) = ρA′

x
(1)

||w(1)||2CCA =
∑

i
1−ρi

ρi

(

w
(1)
i

)2

.

Now solve the following ridge regression problem:

ŵ = argmin
w(1)

Ex(1),y

[

(

w
(1)′

x̂
(1) − y

)2

+ ||w(1)||2CCA

]

.

The main theorem of the paper bounds the bias and variance ofŵ(1).

Theorem 1 Suppose that the assumption from equation 2.3 holds andE [y2|x] ≤ 1. Let

T be a training set consisting ofn pairs (x, y) drawn fromD. Then

ET

[

(

ŵ
(1)′

x
(1) − y

)2
]

≤ E(x,y)

[

(

w
∗′
x− y

)2
]

+ 5ε +

∑

i ρ
2
i

n
.
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Let us briefly examine this bound. The bias term5ε depends on the assumption from

equation 2.3. The variance term depends on the amount of correlation between the two

views. If the two views are highly correlated, then this termis high, and we cannot expect

to learn from few examples. If, on the other hand, the views are conditionally independent

giveny, then there will only be one non-zero correlation coefficient, corresponding to the

optimal regression.

2.3.3 Relating CCA and structural learning

Structural learning is not identical to CCA, but we may analyzea variant of structural

learning that solves an optimization problem identical to that of CCA, subject to certain

constraints on the generating distribution. We briefly outline the algorithmic changes to

ASO (figure 2.1) here.

Multiple views, auxiliary problems, and pivot features

We first divide our feature space into multiple views. For some tasks, this is natural. For

instance, when using SCL to learn representations for part ofspeech taggers, we already

partition pivots into “context” (left and right words) and “content” (middle words). For

sentiment, we can randomly partition the words in the vocabulary into two views [3]. Now

we treat every feature as an auxiliary problem. For each auxiliary problem generated from

a feature in view 1, we only use features from view 2 when training a predictor for it. For

those in view 2, we only use features from view 1 when trainingpredictors. For domain

adaptation, it will be useful divide our views into a view consisting of only pivot features

and one consisting of only non-pivot features.

Squared loss

The third step of SCL and structural learning is to train predictors for each view. For this

discussion, we set the loss to be the squared lossL(w · xj, y) = (w · xj − y)2.
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Within-view whitening

Before we train the predictors, we whiten each view individually by pre-multiplying by

R−1
νν , whereRννR

′
νν = Cνν , as in section 2.3.1. This has creates identity within-view

covariance matricesC11 = C22 = I.

Block SVD by view

Now let us examine the matrixW . The columns ofW are linear predictors, the solution

to the optimization problems from step 3 in algorithm 2.1. Since we don’t use features

from the same view to make predictions within that view, we note thatW has a block

off-diagonal form:

W =





0 W (1)

W (2) 0



 .

Following Ando and Zhang’s suggested extension (section 2.1.4), we focus here on sepa-

rate SVDs for each off-diagonal block,W (ν) for ν ∈ {1, 2}.

Equivalence of ASO and CCA

We begin by partitioning the features into views and whitening. Let us first focus onW (1).

Our modified ASO algorithm findsW (1) by solving the multiple least-squares optimiza-

tion problem

W (1) = argmin
V
||V ′R−1

11 X(1) −R−1
22 X(2)||2F .

The solution to this problem is given by

W (1) = (R−1
11 X(1)X(1)′R−1′

11 )−1R−1
11 X(1)X(2)′R−1′

22 .

By definition, the first term in the product simplifies to the identity matrix. We are left

with

W (1) = R−1
11 X(1)X(2)′R−1′

22 .
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The columns ofΦ(1) are the left singular vectors ofW (1). Equivalently, they are the

eigenvectors ofW (1)W (1)′ , which gives us the following form forφj:

R−1
11 X(1)X(2)′R−1′

22 R−1
22 X(2)X(1)′R−1′

11 φj = ρ2φj

R−1
11 C12C

−1
22 C21R

−1′

11 φj = ρ2φj .

This is exactly the CCA optimization from equation 2.2. Thus our modifications allow us

to view the work of Kakade and Foster [40] as a theoretical treatment of ASO as well as

CCA. When we run SCL in practice, we don’t whiten the data or use squared loss, how-

ever, and it is unclear whether these changes are essential to the performance of structural

learning and SCL.

2.3.4 Implications for domain adaptation

Structural correspondence learning works by training linear predictors for each pivot.

These predictors are linear mappings from non-pivot features to binary labels indicating

the presence or absence of each pivot. If we divide our feature space into two views, one

each for pivot and non-pivot features, the relationship to CCAallows us to interpret SCL

as finding a low-dimensional basis under which linear predictors trained using non-pivot

features are highly correlated with linear predictors trained using pivot predictors.

For semisupervised learning, the theory of Kakade and Foster [40] leads us directly

to a bound on the error of a predictor. Unfortunately the sameis not true for domain

adaptation. The main assumption of Kakade and Foster is thata good predictor can be

trained from each view in isolation. In the case of SCL, we may interpret this as indicating

that a good predictor may be trained from the pivot features alone. Empirically, however,

we have found that this is not true. Non-pivot featuresare necessary for prediction in the

target domain (see chapter 3). An important goal for future work is to develop assumptions

under which SCL can be directly shown to perform well.
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2.4 Other methods for exploiting unlabeled data

SCL uses unlabeled target domain data to find a new feature representation. This feature

representation allows us to train an effective target predictor using source training data.

This is by no means the only method for exploiting unlabeled data, though. In this section,

we briefly review semi-supervised and unsupervised methodsin text, with an emphasis on

applicability for domain adaptation. Our survey here is necessarily brief, but see Zhu [70]

for a more complete survey of semi-supervised learning methods.

2.4.1 Manifold regularization

Procedurally, the most similar methods to structural learning are those which learn a regu-

larizer from unlabeled data [68, 9, 71]. Like structural learning, these methods regularize

parameters by enforcing smoothness in some underlying subspace. The assumptions on

the structure of the subspace are quite different, though. The simplest methods use the

singular value decomposition of the unlabeled data to learna basis for a linear subspace

[68]. Rather than learning predictors, we simply choose the top singular vectors of the

unlabeled data matrix to serve as our basis. While this may be an effective subspace

for semi-supervised learning, there is no clear connectionbetween squared reconstruction

error and error of the predictive task.

One of the most natural ways to regularize predictors is to enforce smoothness between

nearby points. That is, for a real-valued predictor, we require that the predictions be close

for points that are close. How can we decide which points are close, though? One way

to proceed is the data manifold assumption [9, 72]: We assumethat the input instancesx

are sampled from a low dimensional manifold. The neighborhood graph on the unlabeled

data can provide us with an indication of the structure of that manifold.

Suppose we construct a graph whose nodes are instances and whose edges indicate

similarity between instances. LetSij be the square weight matrix for the edges in the
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x1 NN

[the use of signal transduction]

x2JJ

[a man of signal
accomplishements]

x3 NN

[applications of signal
processing]

dist = 1.0 dist = 1.0

dist = 1.0

Figure 2.4: An example of how feature vector hamming distance can be misleading.

Nodes in the graph represent instances, and for each instance we wish to tag the word

“signal” with its part of speech. If we represent each instance using a three-word win-

dow, all instances have hamming distance 1 from one another.Distance in feature space

is insufficient for classification.

graph. One common choice for the similarity function is a Gaussian kernel

Sij = exp

(

||xi − xj||
2
2

σ2

)

.

Given a weight matrixW and a hypothesis classH, Belkin et al. [9] suggest the following

regularized optimization problem

f ∗ = argmin
f∈H

1

N

N
∑

i=1

L(f(xi), yi) +
γ

N + U

N+U
∑

i,j=1

Sij (f(xi)− f(xj))
2 ,

whereN is the number of labeled instances andU is the number of unlabeled instances.

Belkin and Niyogi and others have suggested variants of this regularization, including

learning linear combinations of the bottom eigenvectors ofthe Laplacian of the neighbor-

hood graph [9, 73].

For the manifold regularizer to be effective, the design of the neighborhood graph must

reflect the structure of the input space. For continuous feature spaces, a large unlabeled

neighborhood graph may yield a good approximation to the true manifold. For discrete

feature spaces, the hamming distance is often insufficient,even for large data sets. This
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is because changing just one feature can change the label of an instance, and hamming

distance treats all features equally.

Figure 2.4 illustrates this. Although each instance has hamming distance 1 to each

other instance,x2 is labeled differently fromx1 andx3. Knowing that “transduction” and

“processing” are more similar than either one is to “accomplishments” is necessary to give

correct distances here.

2.4.2 Bootstrapping

Another paradigm for exploiting unlabeled data is bootstrapping [67, 17, 49, 21, 1, 47].

Bootstrapping methods begin with an initial classifier. Theylabel unlabeled instances with

this classifier. Then they choose some subset of the newly-labeled instances to create a

new training set and retrain. There are many variants of bootstrapping for semi-supervised

learning, and it is well beyond the scope of this thesis to analyze all of them in depth. Here

we briefly discuss their relation to SCL and application to domain adaptation.

One of the most well-studied methods for bootstrapping is co-training [17]. Co-

training was the first semi-supervised learning method to formally articulate the notion

of two views. Blum and Mitchell [17] give an algorithm which trains classifiers for each

view separately. Then the classifier for one view is used to label instances to train the

other. Blum and Mitchell analyze their co-training algorithm in the PAC setting. They

show that if each view is sufficient for classification and theviews are conditionally inde-

pendent given the label, then given initial weak predictorsfor each view, co-training finds

an accurate model using only unlabeled data. Co-training is connected to structural learn-

ing via CCA. When analyzing CCA for multiple view regression, Kakade and Foster [40]

also assume that each view is sufficient (has low regret) for regression. But the amount

of conditional independence (correlation) appears as a term in their bound, rather than an

assumption.

Jiang and Zhai [39] studied a bootstrapping method for domain adaptation of text

processing models. They trained a model in the source domain. Then they labeled the
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target domain instances about which the model was most confident and retrained on them.

They report good positive empirical results using this self-training approach on several

text problems, but their work contains no theoretical analysis or discussion of when self-

training could be effective for domain adaptation.

2.4.3 Covariate shift and instance weighting

One area problem that is very closely-related to domain adaptation is the problem of co-

variate shift (also called sample selection bias), which has been studied in the machine

learning and statistics communities [59, 37]. Here we assume the conditional distributions

PrDS
[y|x] andPrDT

[y|x] are identical, but the instance marginal distributionsPrDS
[x]

andPrDT
[x] are different.

Several researchers have studied algorithms for regression in this setting [59, 37]. Like

our domain adaptation setting, they assumed that they had unlabeled data from both source

and target domains. Unlike our application to text, though,they focused primarily on prob-

lems with low-dimensional, dense continuous features. They first estimate the posterior

probability that a particular source instance has been drawn from the target distribution

(for instance, under a kernel density estimate of the targetdistribution). Then they min-

imize an “instance re-weighted” source error objective. That is, each instance is given a

weightαi which depends on its weight under the estimated target. Similar to our previous

minimization problem, we now minimize

N
∑

i=1

αiL (f(w,xi, yi))) + ||w||22 .

Standard kernel density estimators like the Gaussian kernel are effective in low dimen-

sional, continuous spaces, but as we discuss in section 2.4.1, instance weighting is less

effective for high-dimensional, sparse feature spaces such as those for text. From a theo-

retical standpoint, the covariate shift assumption is too weak to allow us to prove a concise,

computable bound for target error under arbitrary source and target marginal distributions

on unlabeled instances (see chapter 4).
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2.5 Summary

This chapter described the structural correspondence learning (SCL) algorithm, a method

for using unlabeled source and target data to learn a shared feature representation that is

simultaneously effective for both domains. SCL uses the technique of structural learning

[3] to find a low-dimensional linear subspace of the orginal feature space. If this subspace

is effective, a good source predictor which uses it is automatically a good predictor for

the target domain.An essential component to SCL is the notion of a pivot feature.Pivot

features are features that are important for classificationand are shared between both

source and target domains.SCL can be seen as modeling a low-dimensional subspace of

the non-pivot features that correlates as much as possible with the pivot features.

We related SCL and structural learning to canonical correlation analysis (CCA) [36],

a statistical method for discovering correlating basis vectors for two multivariate random

variables. Recent work by Kakade and Foster [40] has shown that under relatively weak

assumptions, CCA on unlabeled data can discover an effective low-dimensional basis for

prediction. Using this basis to find a predictor on labeled data can lead to much faster

convergence.We believe that in the future, this relationship will be helpful in formulating

a theoretical analysis of when SCL can help for domain adaptation.
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Chapter 3

Experiments with SCL

This chapter examines in detail the application of SCL to two text processing tasks: senti-

ment analysis of product reviews and part of speech tagging.We treat sentiment analysis

as a binary classification problem (either positive or negative sentiment). Part of speech

tagging is a structured prediction problem, where the task is to label a sentence with a

sequence of part of speech labels. For both of these problems, linear predictors achieve

state-of-the-art results, making them ideal for an empirical investigation of SCL.

We examine the two tasks separately, but performing parallel experiments. First, we

attempt to illustrate intuitively why SCL should help us in domain adaptation. We do

this by examining how domain-specific features are represented in the low-dimensional

subspace it discovers. The latter part of each section givesnumerical error rates showing

that SCL does indeed improve linear models for these problems. We first show that when

we have no labeled target data, SCL significantly reduces error, sometimes by a relative

amount of more than twenty percent. Second, we address the case where we do have a

small amount of labeled target domain data. Under these circumstances, several authors

have proposed techniques for combining source and target data effectively. We show that

combining SCL with these methods yields still greater improvements, reducing error due

to adaptation by as much as forty percent. The results in thischapter are drawn primarily

from Blitzer et al. [16] and Blitzer et al. [15].
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3.1 Adapting a sentiment classification system

A sentiment classification system receives as input a document and outputs a label in-

dicating the sentiment (positive or negative) of the document. This problem has received

considerable attention recently [51, 63, 32]. While movie reviews have been the most stud-

ied domain, sentiment analysis has been extended to a numberof new domains, ranging

from stock message boards to congressional floor debates [25, 61]. Research results have

been deployed industrially in systems that gauge market reaction and summarize opinion

from web pages, discussion boards, and blogs.

With such widely-varying domains, researchers and engineers who build sentiment

classification systems need to collect and curate data for each new domain they encounter.

Even in the case of market analysis, if automatic sentiment classification were to be used

across a wide range of domains, the effort to annotate corpora for each domain may be-

come prohibitive, especially since product features change over time. We envision a sce-

nario in which developers annotate corpora for a small number of domains, train classifiers

on those corpora, and then apply them to other similar corpora. The case for domain adap-

tation is immediately clear, since documents from different domains can vary widely in

the ways they express sentiment.

We constructed a dataset for sentiment domain adaptation byselecting Amazon prod-

uct reviews for four different product types: books, DVDs, electronics and kitchen appli-

ances. Each review consists of a rating (0-5 stars), a reviewer name and location, a product

name, a review title and date, and the review text. Reviews with rating> 3 were labeled

positive, those with rating< 3 were labeled negative, and the rest discarded because their

polarity was ambiguous. After this conversion, we had 1000 positive and 1000 negative

examples for each domain, the same balanced composition as the polarity dataset [51].

In addition to the labeled data, we included between 3685 (DVDs) and 5945 (kitchen)

instances of unlabeled data. The size of the unlabeled data was limited primarily by the

number of reviews we could crawl and download from the Amazonwebsite. Since we

were able to obtain labels for all of the reviews, we also ensured that they were balanced
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between positive and negative examples, as well.

3.1.1 Problem setup and representation

We created feature vectors from each review by using the unigrams and bigrams from

the review title and text. Each unigram and bigram is associated with one dimension of

feature space, and the value for each dimension the count forthat feature in that document.

If we let c(i, j) be the count of thejth feature in theith document in the corpus, then the

dimensions of the feature vectorxi have the form

x
j
i =

c(i, j)
∑d

k=1 c(i, k)
.

This roughly follows the setup of Pang et al. [51] for sentiment classification, although

they also included trigrams in their features. In preliminary experiments, adding trigram

features did not improve performance.

We split each labeled dataset into a training set of 1600 instances and a test set of 400

instances. All of our experiments use a classifier trained onthe training set of one domain

and tested on the test set of a possibly different domain. Thetotal number of features

varies among pairs of domains, but for all pairs, we used approximately 200,000 features

(the dimensionality ofx was 200,000). Our baseline is a linear classifier trained without

adaptation, while the gold standard is an in-domain classifier trained on the same domain

as it is tested. When we train supervised predictors, we minimize the Huber loss with

stochastic gradient descent, as described in chapter 1. On the polarity dataset, this model

matches the results reported by Pang et al. [51].

Pivot features and scaling

We chose pivot features for adapting sentiment classifiers using one of two procedures.

The first procedure is exactly the method described for sentiment in section 2.2.1: Choose

as pivots words and bigrams that occur more thank times in both the source and target
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Selected by frequency Selected by conditional

only, not conditional entropy entropy only, not frequency

book one <num> so all a must a wonderful loved it

very about they like weak don’t waste awful

good when highly recommended and easy

Table 3.1: Top pivots selected by frequency, but not conditional entropy (left) and vice-

versa (right)

domains. We setk to be the largest number such that we have at least 1000 pivots. We

refer to this procedure as “selection by frequency”.

Section 2.2.1 describes another criterion for choosing pivots: the conditional entropy

of the labely given the presence that particular pivot feature. For a particular pair of

domains, we use this by settingk to be the largest number such that we have at least 10,000

potential pivots. Then we sort these potential pivots by conditional entropy and choose the

top 1000. We refer to this procedure as “selection by conditional entropy”. Table 3.1

shows the set-symmetric differences between the two methods for pivot selection when

adapting a classifier from books to kitchen appliances.

We seth, the number of singular vectors computed in the final SVD, to 50 throughout

these experiments. We also followed section 2.2.2 in normalizing the parameters. For

scaling, we first scaled the real-valued featuresΦx so that the average norm of the real-

valued feature vector for each training instance was one

1

N

N
∑

t=1

|Φxt| = 1 .

Then we setα = 0.1 for all of the experiments (see section 2.2.2) , based on heldout data

from the books and kitchen appliances data sets.
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Figure 3.1: A discriminating projection of word features onto the real line, for books

and kitchen appliances. Words on the left (negative valued)behave similarly each other

for classification, but differently from words on the right (positive valued). Above the

horizontal axis are words that only occur in the kitchen appliances domain. Below the

horizontal axis are words that only occur in the books domain.
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rep
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Figure 3.2: A discriminating projection of word features onto the real line, for the DVDs

and electronics domains. Words on the left (negative valued) behave similarly each other

for classification, but differently from words on the right (positive valued). Above the

horizontal axis are words that only occur in the books domain. Below the horizontal axis

are words that only occur in the DVDs domain.

3.1.2 The structure ofΦ

In chapters 1 and 2, we motivated SCL by claiming that it would encode correspondences

such as those in figure 1.5. Here we illustrate the correspondences that SCL actually does
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learn by examining the rows of the matrixΦ. Recall that the inner product of each row with

an instance vectorx yields a single new real-valued featureΦ[i,:]x. From equation 2.1, we

see that this new feature is associated with a weightvi. If we expand the inner product,

for a particular instancex, the score contributed by the new real-valued feature is

viΦ[i,:]x = vi

∑

j

Φijxi .

In particular, we note that if different featuresxj1 andxj2 have similar entries in theith

row of Φ, then they effectively share a single parametervi.

Figures 3.1 and 3.2 illustrate these projections. Each plotshows a single row of the

matrix Φ, along with the most positively-valued and most negatively-valued features for

that row. Let us briefly examine the projections from figure 3.1. The words above the

horizontal axis never appear in our books training data, butwe still may assign them some

weight (viavi), as long as we observe the unqiue book-specific words depicted below the

horizontal axis. For instance, sincepredictable andleaking have similar values

underΦ[:,i], when we observeleaking at test time, it will contribute to the decision rule

as though we had observedpredictable. Figure 3.2 illustrates a similar discriminating

projection for DVDs and electronics.

These illustrations depict how SCL can intuitively perform well. But we note here that

not all projections are discriminating by themselves. The final decision rule is the linear

combination of the featuresΦx. In practice, many projections are not visibly discrim-

inating, and may not be related to the supervised task at all.With labeled source data,

however, we can learn to ignore those projections. Indeed, we may be able to find a good

linear predictor even when there is no single good discriminating projection.

3.1.3 Empirical results: only unlabeled target data

In this section, we investigate empirically the most commonly-encountered domain adap-

tation setting: We have a labeled training sample from a source domain and large unlabeled
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Figure 3.3: Sentiment classification accuracies for domainadaptation between all pairs

using a supervised baseline, SCL and SCL-CE. Horizontal black lines are the accuracies

of in-domain classifiers.

samples from both source and target domains. We first choose pivots according the proce-

dures outlined in section 3.1.1. Then we find the matrixΦ using the unlabeled data from

both domains and train a supervised model using the labeled source data, combining the

SCL and original sparse features.

Figure 3.3 gives accuracies for domain adaptation across all pairs of our sentiment

domains. The target domains are ordered clockwise from the top left: books, DVDs,

kitchen appliances, and electronics. Each group of three bars represents a single source

domain (denoted by the first letter). The three bars themselves are our supervised baseline

(black), SCL with frequency-based pivots (light gray), and SCL with pointwise condi-

tional entropy-based pivots (dark gray). The thick horizontal bars are the accuracies of the

in-domain classifiers for these domains. These classifiers are trained on the 1600-instance
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training set and tested on the 400-instance test set of the same domain and represent a gold

standard for the target domain.

To help interpret the results, the top left set of bars (from books to DVDs) shows that

the baseline achieves 72.8% accuracy adapting from DVDs to books. Choosing pivots

based on their conditional entropy with the labels and running SCL achieves a 79.7%

accuracy and the in-domain gold standard is 80.4%. We say that theadaptation lossfor

the baseline model is 7.6% and the adaptation loss for the SCL-CE model is 0.7%. The

relative reduction in error due to adaptationof SCL-CE for this test is 90.8%.

We can observe from these results that there is a rough grouping of our domains. Books

and DVDs are similar, as are kitchen appliances and electronics, but the two groups are

different from one another. Adapting classifiers from booksto DVDs, for instance, is eas-

ier than adapting them from books to kitchen appliances. We note that when transferring

from kitchen to electronics, SCL-CE actually outperforms thein-domain classifier. This

is possible since the unlabeled data may contain information that the in-domain classifier

does not have access to.

3.1.4 Empirical results: some labeled target data

domain features with similar values underΦ[i,:]

books book was, readingthis, thisstory, characters

kitchen appliances wasdefective, wasbroken, noisy, thispurchase

Table 3.2: An example of a mis-alignment for the books and kitchen appliances domains.

The kitchen appliances-specific features are associated with negative sentiment, but the

books-specific features are not associated with either positive or negative sentiment.

The SCL-CE model improves over the baseline in 10 out of 12 cases, but there are

two pairs of domains in which SCL-CE causes error to increase. This is because while

SCL generally creates good representations for adaptation,it may also misalign features.
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Figure 3.4: Sentiment classification accuracies for domainadaptation with 50 labeled

target domain instances.

We designed the pivots to reflect intuitions about class membership, but we did not en-

force class membership in our final SCL representation. Table3.2 illustrates one example

of mis-aligned features, for the books and kitchen appliances domain. For this pair of

domains, the relative error due to adaptation increases by 24% under the SCL-CE model.

Despite the increase in error, though, we saw in section 3.1.2 that there are correct

discriminating projections for domain paris such as books and kitchen appliances. Here

we propose to exploit small amounts of labeled target domaindata to slightly adjust the

parametersv for the SCL features. The intuition is that even with very small amounts of

target data, the number of SCL parameters is small enough to learn an effective correc-

tion from source to target. Using the notation of Ando and Zhang [3], we can write the

supervised training objective of SCL on the source domain as

min
w,v

∑

i

L
(

w
T
xi + v

T
Φ

T
xi, yi

)

+ λ||w||2 + µ||v||2 ,

wherey is the label. The weight vectorw ∈ R
d weighs the original features, whilev ∈ R

k

weighs the projected features. Ando and Zhang [3] suggestλ = 10−4, µ = 0, which we

have used in our results so far.

Suppose now that we have trained source model weight vectorsws andvs. A small

amount of target domain data is probably insufficient to significantly changew, but we
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can correctv, which is much smaller. We augment each labeled target instancexj with

the label assigned by the source domain classifier [30, 16]. Then we solve

minw,v

∑

j L (w′
xj + v

′θxj, yj) + λ||w||2

+µ||v − vs||
2 .

Since we don’t want to deviate significantly from the source parameters, we setλ = µ =

10−1.

Figure 3.4 shows the corrected SCL-CE model using 50 target domain labeled in-

stances. We chose this number since we believe it to be a reasonable amount for a single

engineer to label with minimal effort. For each target domain we show adaptation from

only the two domains on which SCL-CE performed the worst relative to the supervised

baseline. For example, the book domain shows only results from electronics and kitchen,

but not DVDs. As a baseline, we used the label of the source domain classifier as a feature

in the target, but did not use any SCL features. We note that thebaseline is very close to

just using the source domain classifier, because with only 50target domain instances we

do not have enough data to relearn all of the parameters inw. As we can see, though,

relearning the 50 parameters inv is quite helpful. The corrected modelalwaysimproves

over the baseline for every possible transfer, including those not shown in the figure.

The idea of using the regularizer of a linear model to encourage the target parameters

to be close to the source parameters has been used previouslyin domain adaptation. In

particular, Chelba and Acero [18] showed how this technique can be effective for capi-

talization adaptation. The major difference between our approach and theirs is that we

penalize deviation from the source parameters for the weights v of projected features,

while they work with the weights of the original features. Aswe may expect, for our

small amount of labeled target data and large number of features, attempting to penalize

w usingws performed no better than our baseline. Because we only need tolearn to ig-

nore projections that misalign features, we can make much better use of our labeled data

by adapting only 50 parameters, rather than 200,000.

Table 3.3 summarizes the results of sections 3.1.3 and 3.1.4. Structural correspondence
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dom\model base base scl scl-mi scl-mi large-ul

+targ +targ Φ-only

books 8.9 9.0 7.4 5.8 4.4 1.8

dvd 8.9 8.9 7.8 6.1 5.3 3.8

electronics 8.3 8.5 5.9 5.5 4.8 1.3

kitchen 10.2 9.9 7.0 5.6 5.1 3.9

average 9.1 9.1 7.1 5.8 4.9 2.7

Table 3.3: Summary of sentiment classification results. Each row shows the average loss

due to adaptation for each method for a single target domain,averaged over all source

domains. The bottom row shows the loss averaged over all source domains runs.

learning reduces the error due to transfer by 21%. Choosing pivots by mutual information

allows us to further reduce the error to 36%. Finally, by adding 50 instances of target

domain data and using this to correct the misaligned projections, we achieve an average

relative reduction in error of 46%.

The final column of table 3.3 shows a new set of results obtained by training on a much

larger dataset. In this case, we doubled the amount of unlabeled data in each domain and

trained on only the low-dimensional representation of the data. While these numbers

represent a significant improvement even over the previous SCL results, we note that they

are only directly comparable to the original supervised baseline.1 They demonstrate that

in many cases, the SCL representation alone can give a significant improvement over the

baseline, even without using the original features.
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Figure 3.5: A chain-structured graphical representation of a sentence and its part of speech

tag sequence. We factor the label sequence (and theζ vector) along the edges of the graph

to allow for efficient inference [42, 19].

3.2 Adapting a part of speech tagger

A part of speech tagger takes as input a sentence and outputs asequence of labels in-

dicating the part of speech tags for each word (figure 3.5). Part of speech tagging is a

canonical problem in text processing, and it serves as a firststep in many pipelined sys-

tems, including higher-level syntactic processing [21, 47], information extraction [56, 52],

and machine translation [66]. Because of their fundamental role, part of speech tagging

systems must be deployed in a variety of domains. In this section, we show how to use

SCL to adapt a tagger from a standard resource, the Penn treebank Wall Street Journal

(WSJ) corpus [46] to a new corpus of MEDLINE abstracts [52].

The Penn BioIE project [52] focuses on building information extraction and natural

language processing systems for biomedical text. We obtained a corpus from this project

consisting of 200,000 sentences that were chosen by searching MEDLINE for abstracts

pertaining to cancer, in particular genomic variations andmutations. This corpus contains

as a subset a smaller corpus consisting of 1061 sentences that have been annotated by

linguists with part of speech tags. The Penn treebank corpusconsists of forty thousand

annotated sentences. In this section our goal is to adapt a tagger trained on the treebank

corpus to perform well on the MEDLINE corpus.

1In addition to the extra unlabeled data, they also use a more recent version of the SGD optimization
algorithm.
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word prefix suffix

left The The, Th The, he

middle clash clas, cla, cl lash, ash, sh

right is is is

left-mid The clash The clas, The cla, The lash, The ash

The cl,Th cl,. . . The sh, he sh,. . .

left-right The is The is, Th is, The is, he is

mid-right clash is clas is, cla is, cl is lash is, ash is, sh is

Table 3.4: The types of features we use for part of speech tagging. Each cell represents

one type, and the entries of the cells are example instantiations for the edge of the graph

in figure 3.5 ending withsign. In this case, the middle word issign.

3.2.1 Problem setup and representation

The part of speech tagset we use consists of the standard Penntreebank tagset, augmented

with two new tags: HYPH (for hyphens) and AFX (for common post-modifiers of biomed-

ical entities such as genes). These tags were introduced dueto the importance of hyphen-

ated entities in biomedical text, and are used for 1.8% of thewords in the test set. Any

tagger trained only on WSJ text will automatically predict wrong tags for those words.

We treat part of speech tagging as a sequence labeling problem. Figure 3.5 shows an

example sentence, together with a graph depicting how we factor the label. When the label

(and theζ vector) factors along the edges of the graph, we may perform efficient infer-

ence using dynamic programming [42, 19]. This allows us to compute the best sequence

for a particular sentence given a model. With the ability to perform efficient inference,

we can use any number of models to learn an appropriate linearmodel. We choose the

discriminative online large-margin learning algorithm MIRA [22].

Now that we have chosen an appropriate factorization, we must choose features for

a particular edge in the graph. Table 3.4 depicts the featuretypes we use, together with

examples of the features that would be instantiated for the edge ending insign. We
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generate theζ vector by concatenating each of these features with the set of possible

labels. We also add one entry to theζ vector for the identity of the tags at each end of the

edge. In the example from table 3.4, this entry would beDT-NN. Each of these features,

and each of the entries in theζ vector is represented as a single binary number: 1 if it is

present in an instance and 0 if it is not present. In total, across 200,000 sentences from

both domains, we created 5 million features (the dimensionality of x was 5 million).

Pivot features and model choices

We chose pivot features using the method from section 2.2.1.In all the experiments of this

section, we use left, middle, and right words that occur morethan 50 times in both corpora.

State of the art part of speech taggers require feature typesof different granularities. The

total number of types is equal to 18, the number of entries in table 3.4. We perform a per-

type dimensionality reduction, and for each type sub-matrix, we seth = 25. This gives us

a total of 450 dense features. Just as for sentiment classification we normalize and scale

the real-valued features. We first scaled the real-valued features so that the average 1-norm

of the sparse and dense features is the same for each traininginstance

1

N

N
∑

t=1

|Φxt| =
1

N

N
∑

t=1

|xt| .

Then we setα = 1 for all of the experiments, based on heldout Wall Street Journal data.

3.2.2 The structure ofΦ

As in section 3.1.2, in this section we explore the structureof the SCL representation by

representing pictorially the entries of the matrixΦ. Unlike for sentiment classification, in

these experiments we have divided up the matrixΦ into several separate matrices depend-

ing on the feature type. Figure 3.6 shows entriesΦij in a single rowΦ[i,:] of the projection

matrix for themiddle word type. As before, we chose a discriminating projection. Part

of speech tagging is a multiclass problem so a single dimension will not allow us to make
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Figure 3.6: An example projection of word features ontoR. Words on the left (negative

valued) behave similarly to each other for classification, but differently from words on the

right (positive valued). The projection distinguishes nouns from adjectives and determin-

ers in both domains.

all possible discriminations. The row we chose distinguishes between nouns (negative

underΦ[i,:]) and adjectives (positive underΦ[i,:]).

Again, we emphasize that when training a tagger in the Wall Street Journal, we can

implicitly assign weight to the MEDLINE-only features above the horizontal axis via the

projectionΦ[i,:]. Since the wordreceptors has a similar value underΦ[i,:] to the WSJ-

specific wordscompany andtransaction, we can incorporate it into a decision rule

at test time in MEDLINE. Finally, we wish to emphasize once again that while these

projections can give us clues as to how SCL can improve predictor accuracy, the actual

decision rule is a linear combination of 450 real-valued features. Even without a single

good discriminating projection, we may still be able to find agood linear model.

3.2.3 Empirical results: only unlabeled target data

For part of speech tagging, we only have one pair of domains. Moreover, we only have a

large amount of labeled data for a single domain (the Wall Street Journal). Thus for this

problem, we cannot investigate the performance of SCL acrossvarying pairs of domains.

Instead we investigate learning curves for SCL with increasing amounts of source data.

The graph in figure 3.7(a) shows three curves. The solid curveis a supervised MIRA
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(b) Accuracy on test set

Words

Model All Unknown

MXPOST[53] 87.2 65.2

supervised 87.9 68.4

semi-ASO 88.4 70.9

SCL 88.9 72.0

(c) Statistical Significance

(McNemar’s) for all words

Null Hypothesis p-value

semi-ASO vs. super 0.0015

SCL vs. super 2.1× 10−12

SCL vs. semi-ASO 0.0003

Figure 3.7: Part of speech tagging results with unlabeled target training data

baseline which does not use any unlabeled data. The dashed curve is a semi-supervised

baseline using ASO. Here we treated the target domain as unlabeled and learned an ASO

representation from 200,000 MEDLINE sentences, but we didn’t attempt to choose com-

mon pivots or induce correspondences. Finally, the dotted curve is the SCL model. For the

points on this curve, we learned an SCL representation from 100,000 Wall Street Journal

and MEDLINE sentences, following the procedures from section 3.2.1.

The horizontal axis of figure 3.7(a) shows increasing amounts of source training data.

With one hundred sentences of training data, structural correspondence learning gives a

19.1% relative reduction in error over the supervised baseline, and it consistently outper-

forms both baseline models. Figure 3.7(b) gives results for40,000 sentences, and Fig-

ure 3.7(c) shows corresponding significance tests, withp < 0.05 being significant. We

use a McNemar paired test for labeling disagreements [31]. Even when we use all the
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WSJ training data available, the SCL model significantly improves accuracy over both the

supervised and ASO baselines.

SCL is designed to improve the accuracies for unknown words (words that have never

before been seen in the WSJ). For our final set of experiments, we investigated unknown

word accuracy more directly. The second column of Figure 3.7(b) gives unknown word

accuracies on the biomedical data. Of thirteen thousand test instances, approximately

three thousand were unknown. For unknown words, SCL gives a relative reduction in

error of 19.5% over MXPOST [53], a common out-of-the-box baseline, even with 40,000

sentences of source domain training data.

Improving a parser in the target domain

At the beginning of section 3.2, we motivated our investigation of part of speech tagging

by emphasizing its importance as a first step in many pipe-lined text processing systems.

Here we show that improving a part of speech tagger in a new domain can improve a

dependency parser in the new domain as well. We use the parserdescribed by McDonald

et al. [48]. That parser assumes that a sentence has been PoS-tagged before parsing, so it

is a straightforward match for our experiments here.
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Figure 3.8:Dependency parsing results using dif-

ferent part of speech taggers

Figure 3.8 shows dependency pars-

ing accuracy for increasing amounts of

Wall Street Journal data. At test time, we

tag the MEDLINE data with one of three

taggers. Then we use the output of this

tagger as input to the dependency parser.

The first tagger (thick black line) is a su-

pervised baseline. The second (dashed

line) is trained using SCL. The third (dot-

ted line) is the gold standard, where in-

stead of using an automatic tagger we
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just use the correct tags from the annota-

tion. The SCL tags consistently improve

parsing performance over the tags output by the supervised tagger, closing the gap between

the baseline and the gold standard by about 50%.

3.2.4 Empirical results: some labeled target data
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nosource

(b) 500 target training sentences

Model Testing Accuracy

nosource 94.5

1k-super 94.5

1k-SCL 95.0

40k-super 95.6

40k-SCL 96.1

(c) McNemar’s Test

Null Hypothesis p-value

1k-super vs. nosource0.732

1k-SCL vs. 1k-super 0.0003

40k-super vs. nosource2× 10−12

40k-SCL vs. 40k-super 6× 10−7

Figure 3.9: PoS tagging results with no target labeled training data

We now examine a setting in which we have a small amount of labeled MEDLINE

data. As with sentiment classification, the key idea is to usethe labeled target data to

make adjustments to a model trained in the source domain. Unlike in sentiment clas-

sification, however, for part of speech tagging we exploit the structured nature of the

problem. In particular, we note here that the output of the source classifier gives in-

formation not only about the tag of the current word, but alsoabout the tag of nearby
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words. In order to use this information, we first train a tagger on the Wall Street Jour-

nal. Then we create features from the output of the source model and use these features

for training and testing in the target [30]. We use as features the currently predicted tag

and all tag bigrams in a 5-word window around the current word. For example, sup-

pose the source tagger labelswith normal signal transduction as IN JJ

JJ NN. One feature we would create for the window centered atsignal is the feature

source left mid tag bigram=JJ JJ.

Naturally we expect the accuracy of the source-trained tagger in the target domain to

affect the quality of the features we create. In these experiments, we show how using fea-

tures from an SCL-based source tagger can significantly improve the final target-trained

tagger. Figure 3.9(a) plots tagging accuracy for varying amounts of MEDLINE training

data. The two horizontal lines are the fixed accuracies of theSCL WSJ-trained taggers

using one thousand and forty thousand sentences of trainingdata. The five learning curves

are for taggers trained with varying amounts of target domain training data. They use

features on the outputs of taggers from section 3.2.3. The legend indicates the kinds of

features used in the target domain (in addition to the standard features). For example,

“40k-SCL” means that the tagger uses features on the outputs of an SCL source tagger

trained on forty thousand sentences of WSJ data. “nosource” indicates a target tagger that

did not use any tagger trained on the source domain. With 1000source domain sentences

and 50 target domain sentences, using SCL tagger features gives a 20.4% relative reduc-

tion in error over using supervised tagger features and a 39.9% relative reduction in error

over using no source features.

Figure 3.9(b) is a table of accuracies for 500 target domain training sentences, and

Figure 3.9(c) gives corresponding significance scores. With 1000 source domain sentences

and 500 target domain sentences, using supervised tagger features gives no improvement

over using no source features. Using SCL tagger features still does, however.

60



3.3 Related work

In this chapter we showed how SCL can improve linear discriminative models, both when

we have no labeled target data at all, and when we have small amounts of labeled target

data. Related work that does not use any target labeled data isscarce, but we address

it, as well as other mdethods for semi-supervised learning in section 2.4. Here we focus

on related work which uses labeled target data, related workon sentiment classification

and part of speech tagging in general, and finally the small amount of work on adapting

sentiment classifiers and PoS taggers.

3.3.1 Using labeled target data for domain adaptation

Although it is preferable to avoid labeling data in the target domain altogether, labeled data

is still by far the most useful resource to have. Furthermore, when we do have some labeled

data, we should be able to exploit it as best as possible. Our intention in this chapter is not

to advocate one method for using labeled target data in particular. We already showed that

SCL is compatible with two common methods for incorporating labeled target data, and

here we briefly examine the space of such methods.

We combine SCL with the method of Chelba and Acero [18] in section 3.1.4. They

begin by training a linear model on the source domain. Then they use maximum a poste-

riori estimation of the weights of a maximum entropy target domain classifier. The prior

is Gaussian with mean equal to the weights of the source domain classifier. Florian et al.

[30] describe the method we use in section 3.2.4. They train amodel on the target domain

using the output of the source model as a feature.

In addition to these methods, there have been several other investigations of domain

adaptation. Roark and Bacchiani [54] use a Dirichlet prior on the multinomial parameters

of a generative parsing model to combine a large amount of training data from a source

corpus (WSJ), and small amount of training data from a target corpus (Brown). Daume

61



and Marcu [28] use an empirical Bayes model to estimate a latent variable model group-

ing instances into domain-specific or common across both domains. They also jointly

estimate the parameters of the common classification model and the domain specific clas-

sification models. Daume [27] gives a simple feature duplication method that performs

surprisingly well when the target training data yields a sufficiently accurate model on its

own. Because SCL combines easily with linear classification methods, we emphasize that

it is compatible with any of these schemes for exploiting labeled data.

3.3.2 Sentiment classification

Sentiment classification has advanced considerably since the work of Pang et al. [51],

which we use as our baseline. Thomas et al. [61] use discoursestructure present in con-

gressional records to perform more accurate sentiment classification. Pang and Lee [50]

treat sentiment analysis as an ordinal ranking problem. In our work we only show im-

provement for the basic model, but all of these new techniques also make use of lexical

features. Thus we believe that our adaptation methods couldbe also applied to those more

refined models.

While work on domain adaptation for sentiment classifiers is sparse, it is worth noting

that other researchers have investigated unsupervised andsemisupervised methods for do-

main adaptation. The work most similar in spirit to ours thatof Turney [63]. He used the

difference in mutual information with two human-selected features (the words “excellent”

and “poor”) to score features in a completely unsupervised manner. Then he classified

documents according to various functions of these mutual information scores. We stress

that our method improves a supervised baseline. While we do not have a direct compar-

ison, we note that [63] performs worse on movie reviews than on his other datasets, the

same type of data as the polarity dataset.

We also note the work of Aue and Gammon [7], who performed a number of empirical

tests on domain adaptation of sentiment classifiers. Most ofthese tests were unsuccessful.
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Their most significant results were on combining a number of source domains. They ob-

served that source domains closer to the target helped more.In preliminary experiments

we confirmed these results. Adding more labeled data always helps, but diversifying train-

ing data does not. For example, when classifying kitchen appliances, for any fixed amount

of labeled data, it is always better to draw from electronicsas a source than use some

combination of all three other domains.

3.3.3 Part of speech tagging

While the literature on unsupervised part of speech tagging is quite large, to the best of

our knowledge, we are the first to adapt part of speech taggersto new domains. Lease and

Charniak [43] adapt a WSJ parser to biomedical text without anybiomedical treebanked

data. However, they assume other labeled resources in the target domain. In section 3.2.3

we give similar parsing results, but we adapt a source domaintagger to obtain the part of

speech resources rather than using gold tags. Finally, McClosky and Charniak [47] use

a self-training technique to adapt a natural language parser to a new domain. They don’t

apply their technique to biomedical text, but they do show significant gains for the Brown

corpus. At the same time, for very different domains such as conversational speech, their

self-training technique does not give a large improvement over their baseline parser.

3.4 Summary

The chapter described experiments demonstrating the use ofstructural correspondence

learning for adapting sentiment classifiers and part of speech taggers.For both tasks, SCL

significantly improves a state-of-the-art discriminativemodel using on unlabeled data. In

the case of sentiment classfication, SCL gives a relative reduction in error due to adaptation

of 36%. When combined with simple methods for using labeled data [18,30], for using

labeled data SCL can give even greater improvement.For both tasks, we demonstrated

settings under which SCL can reduce error by more than 40%.
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Chapter 4

Learning bounds for domain adaptation

An important component to better understanding domain adaptation is a formal characteri-

zation of when adaptation techniques work, as well as how to best exploit the resources we

have. This chapter develops a theoretical framework for domain adaptation and comprises

the work of Ben-David et al. [10] and Blitzer et al. [14]. We firstshow how to use this

framework to prove bounds on the target error for classifierswhich are trained in a source

domain. We then demonstrate how to use the bound to estimate the adaptation error for

the sentiment classification task. This is the focus of section 4.2 and comprises work from

Blitzer et al. [15].

Section 4.3 gives a bound on the true target error of a model trained to minimize a

convex combination of empirical source and target errors. The bound is relevant for sce-

narios where a limited amount of target data is available, such as those corresponding to

the experiments of sections 3.1.4 and 3.2.4). It describes an intuitive tradeoff between

the quantity of the source data and the accuracy of the targetdata. Furthermore, under

relatively weak assumptions we can compute it from finite labeled and unlabeled sam-

ples of the source and target distributions. We use the task of sentiment classification to

demonstrate that our bound makes correct predictions aboutmodel error with respect to

the distance between source and target domains and the number of training instances.

Finally, we extend our theory to the case in which we have multiple sources of training
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data, each of which may be drawn according to a different distribution and may contain

a different number of instances. Several authors have empirically studied a special case

of this in which eachinstanceis weighted separately in the loss function, and instance

weights are set to approximate the target domain distribution [37, 13, 24, 39]. We give a

uniform convergence bound for algorithms that minimize a convex combination of mul-

tiple empirical source errors and we show that these algorithms can outperform standard

empirical error minimization.

4.1 A rigorous model of domain adaptation

We formalize domain adaptation for binary classification asfollows. A domainis a pair

consisting of a distributionD onX and a labeling functionf : X → [0, 1].1 Initially we

consider two domains, asourcedomain〈DS, fS〉 and atargetdomain〈DT , fT 〉.

A hypothesisis a functionh : X → {0, 1}. The probability according the distribu-

tion DS that a hypothesish disagrees with a labeling functionf (which can also be a

hypothesis) is defined as

εS(h, f) = Ex∼DS
[ |h(x)− f(x)| ] .

When we want to refer to theerror of a hypothesis, we use the shorthandεS(h) =

εS(h, fS). We write the empirical error of a hypothesis on the source domain asε̂S(h).

We use the parallel notationεT (h, f), εT (h), andε̂T (h) for the target domain.

We measure the distance between two distributionsD andD′ using a hypothesis class-

specific distance measure. LetH be a hypothesis class for instance spaceX , andAH

be the set of subsets ofX that are the support of some hypothesis inH. We define the

distance between two distributions as:

dH(D,D′) = 2 sup
Zh∈AH

|PrD [Zh]− PrD′ [Zh]| .

1This notion of domain is not the domain of a function. To avoidconfusion, we will always mean a
specific distribution and function pair when we say domain.
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For our purposes, the distancedH has an important advantage over other methods for com-

paring distributions such asL1 distance or the KL divergence: we can computedH using

finite samples from the distributionsD andD′ whenH has finite VC dimension [12]. Fur-

thermore, as the following theorem shows, we can compute a finite-sample approximation

to dH by finding a classifierh ∈ H that maximally discriminates between instances from

D andD′.

Theorem 2 Let ε̂·(h, 1),ε̂·(h, 0) indicate the empirical error with respect to a particular

distribution of hypothesish with respect to the constant functions 1 and 0. For fixed

samplesUS,UT from the source and target domains, both of sizem′, the empiricaldH

distance is

dH(US,UT ) = 2− 2 min
h∈H

[ε̂S(h, 1) + ε̂T (h, 0)] .

The proof of this theorem is in appendix A.1. It relies on the one-to-one correspondence

between hypothesesh ∈ H and halfspacesZh ∈ AH.

We call the hypothesis that performs the best on the combinedsource and target distri-

bution the ideal hypothesis:

h∗ = argmin
h∈H

εS(h) + εT (h) .

We denote the combined error ofh∗ by λ = εS(h∗) + εT (h∗) . The ideal hypothesis

explicitly embodies our notion of adaptability. When it performs poorly, we cannot expect

to learn a good target classifier by minimizing source error.On the other hand, for the

kinds of tasks mentioned in at the beginning of the chapter, we expectλ to be small. If

this is the case, we can reasonably approximate target errorusing source error and the

distance betweenDS andDT .

The key element of our analysis is the error of one hypothesiswith respect to another.

We now define the symmetric difference space, which capturesexplicitly the halfspaces

where two hypotheses disagree. We define the symmetric difference hypothesis space

H∆H as

H∆H = {h(x)⊕ h′(x) : h, h′ ∈ H} ,
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where⊕ is the XOR operator. Each hypothesisg ∈ H∆H labels as positive all pointsx

on which a given pair of hypotheses inH disagree.

We illustrate the kind of result available in this setting with the following bound on

the target error in terms of the source error, the differencebetween labeling functionsfS

andfT , and the distance between the distributionsDS andDT . This bound is essentially a

restatement of the main theorem of Ben-David et al. [10], correcting a mistake in both the

statement and proof of their theorem.

Theorem 3 LetH be a hypothesis space of VC-dimensiond andUS, UT be unlabeled

samples of sizem′ each, drawn fromDS andDT , respectively. Let̂dH∆H be the empirical

distance onUS, UT , induced by the symmetric difference hypothesis space. With probabil-

ity at least1− δ (over the choice of the samples), for everyh ∈ H,

εT (h) ≤ εS(h) +
1

2
d̂H∆H(US,UT ) + 4

√

2d log(2m′) + log(4
δ
)

m′
+ λ .

The corrected proof of this result can be found Appendix A.2.The main step in the proof

is a variant of the triangle inequality in which the sides of the triangle represent errors of

one decision rule with respect to another [10, 23]. The boundis relative toλ. When the

combined error of the ideal hypothesis is large, there is no classifier that performs well on

both the source and target domains, so we cannot hope to find a good target hypothesis by

training only on the source domain. On the other hand, for small λ (the most relevant case

for domain adaptation), theorem 3 shows that source error and unlabeledH∆H-distance

are important quantities for computing target error.

4.2 Measuring adaptability with theH∆H distance

Even with only unlabeled data, theH∆H-distance gives us a clue about how much adap-

tation loss we can expect for a particular pair of domains. Toillustrate how this can be

useful, we study a setting where an engineer knows roughly her domains of interest but

does not have any labeled data yet. In that case, she can ask the question “Which sources
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Figure 4.1: The proxyH∆H-distance between each domain pair plotted against the aver-

age adaptation loss. Each pair of domains is labeled by theirfirst letters: EK indicates the

pair electronics and kitchen.

should I label to obtain the best performance over all my domains?” On our product do-

mains, for example, if we are interested in classifying reviews of kitchen appliances, we

know from chapter 3 that it would be foolish to label reviews of books or DVDs rather

than electronics. We show how to select source domains usingonly unlabeled data and

the SCL representation.

We would like to use theH∆H-distance directly, but finding a maximally discrim-

inating symmetric difference of linear classifiers is NP hard2. Instead, we approximate

dH∆H by training a linear classifier to discriminate between the two domains. We use a

standard hinge loss (normalized by dividing by the number ofinstances) and apply the

quantity1 −
(

hinge loss
)

in place of the actualdH∆H. Let ζ(US,UT ) be our approxima-

tion to dH∆H, computed from source and target unlabeled data. For domains that can be

perfectly separated with margin,ζ(US,UT ) = 1. For domains that are indistinguishable,

ζ(US,UT )=0.

2Even finding a maximally discriminating linear separator isNP-hard[12]
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To decide which domains to label, for each pair of domains we compute the SCL

representation. Then we create a data set where each instance Φ
T
x is labeled with the

identity of the domain from which it came and train a linear classifier. Figure 4.1 is a

correlation plot between the proxyH∆H-distance and the adaptation error. The two are

positively correlated.

Suppose we wanted to label two domains out of the four in such away as to minimize

our error on all the domains. Using the proxyH∆H-distance as a criterion, we observe

that we would choose one domain from either books or DVDs, butnot both, since then

we would not be able to adequately cover electronics or kitchen appliances. Similarly we

would also choose one domain from either electronics or kitchen appliances, but not both.

4.3 A learning bound combining source and target data

Theorem 3 shows how to relate source and target error. As sections 3.1.4 and 3.2.4 show

though, we can often achieve significant improvement if we also have a small amount of

labeled data in the target domain. We now proceed to give a learning bound for empirical

error minimization using combined source and target training data. At train time a learner

receives a sampleS = (ST , SS) of m instances, whereST consists ofβm instances drawn

independently fromDT andSS consists of(1− β)m instances drawn independently from

DS. The goal of a learner is to find a hypothesis that minimizes target errorεT (h). When

β is small, as in domain adaptation, minimizing empirical target error may not be the best

choice. We analyze learners that instead minimize a convex combination of empirical

source and target error:

ε̂α(h) = αε̂T (h) + (1− α)ε̂S(h)

We denote asεα(h) the corresponding weighted combination of true source and target

errors, measured with respect toDS andDT .

We bound the target error of a domain adaptation algorithm that minimizeŝεα(h). The

proof of the bound has two main components, which we state as lemmas below. First we
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bound the difference between the target errorεT (h) and weighted errorεα(h). Then we

bound the difference between the true and empirical weighted errorsεα(h) andε̂α(h). The

proofs of these lemmas, as well as the proof of Theorem 4, are in Appendix A.3.

Lemma 1 Leth be a hypothesis in classH. Then

|εα(h)− εT (h)| ≤ (1− α)

(

1

2
dH∆H(DS,DT ) + λ

)

.

The lemma shows that asα approaches 1, we rely increasingly on the target data, and the

distance between domains matters less and less. The proof uses a similar technique to that

of Theorem 3.

Lemma 2 LetH be a hypothesis space of VC-dimensiond. If a random labeled sample

of sizem is generated by drawingβm points fromDT and (1 − β)m points fromDS,

labeling them according tofS and fT , respectively, then with probability at least1 − δ

(over the choice of the samples), for everyh ∈ H

|ε̂α(h)− εα(h)| <

√

α2

β
+

(1− α)2

1− β

√

d log(2m)− log δ

2m
.

The proof is similar to standard uniform convergence proofs[64, 6], but it uses Hoeffding’s

inequality in a different way because the bound on the range of the random variables

underlying the inequality varies withα andβ. The lemma shows that asα moves away

from β (where each instance is weighted equally), our finite sampleapproximation to

εα(h) becomes less reliable.

Theorem 4 LetH be a hypothesis space of VC-dimensiond. LetUS andUT be unlabeled

samples of sizem′ each, drawn fromDS andDT respectively. LetS be a labeled sample of

sizem generated by drawingβm points fromDT and(1− β)m points fromDS, labeling

them according tofS andfT , respectively. If̂h ∈ H is the empirical minimizer of̂εα(h)

on S andh∗
T = minh∈H εT (h) is the target error minimizer, then with probability at least
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1− δ (over the choice of the samples),

εT (ĥ) ≤ εT (h∗
T ) + 2

√

α2

β
+

(1− α)2

1− β

√

d log(2m)− log δ

2m
+

2(1− α)





1

2
d̂H∆H(US,UT ) + 4

√

2d log(2m′) + log(4
δ
)

m′
+ λ



 .

Whenα = 0 (that is, we ignore target data), the bound is identical to that of Theorem 3,

but with an empirical estimate for the source error. Similarly whenα = 1 (that is, we use

only target data), the bound is the standard learning bound using only target data. At the

optimalα (which minimizes the right hand side), the bound is always atleast as tight as

either of these two settings. Finally note that by choosing different values ofα, the bound

allows us to effectively trade off the small amount of targetdata against the large amount

of less relevant source data.

4.4 Evaluating the bound from theorem 4

We evaluate our theory by comparing its predictions to empirical results. While ideally

theorem 4 could be directly compared with test error, this isnot practical becauseλ is

unknown,dH∆H is computationally intractable [10], and the VC dimensiond is too large

to be a useful measure of complexity. Instead, we develop a simple approximation of

theorem 4 that we can compute from unlabeled data. For many adaptation tasks,λ is small

(there exists a classifier which is simultaneously good for both domains), so we ignore it

here. We approximatedH∆H using the technique of section 4.2. Finally we replace the VC

dimension sample complexity term with a tighter constantC. The resulting approximation

to the bound of Theorem 4 is

f(α) =

√

C

m

(

α2

β
+

(1− α)2

1− β

)

+ (1− α)ζ(US,UT ) . (4.1)

Our experimental results are for the task of sentiment classification. We use the data

provided described in chapter 3 and augment it with four additional domains. This gives us
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(a) vary source,mS = 2500 (b) ζ(US ,UT ) = 0.715 (c) ζ(US ,UT ) = 0.715
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Figure 4.2:Comparing the bound from theorem 4 with test error for sentiment classification. Each

column varies one component of the bound. For all plots, they-axis shows the error and thex-axis

showsα. Plots on the top row show the value given by the bound, and plots on the bottom row

show the empirical test set error. Column (a) depicts different distancesamong domains. Column

(b) depicts different numbers of target instances, and column (c) represents different numbers of

source instances.
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Figure 4.3: An illustration of the phase transition betweenpreferring either source or target

training data. The value ofα which minimizes the bound is indicated by the intensity,

where black meansα = 1. We fixC1 = 1600 andζ(US,UT ) = 0.715, as in figure 4.2. The

x-axis shows the number of source instances (log-scale). They-axis shows the number

of target instances. A phase transition occurs at 3,130 target instances. With more target

instances than this, it is more effective to ignore even an infinite amount of source data.

a total of eight types of products: apparel, books, DVDs, electronics, kitchen appliances,

music, video, and a catchall category “other”. As before, the task is binary classification:

given a review, predict whether it is positive (4 or 5 out of 5 stars) or negative (1 or 2

stars). We chose the “apparel” domain as our target domain, and all of the plots on the

bottom row of figure 4.2 are for this domain. We obtain empirical curves for the error as

a function ofα by training a classifier using a weighted hinge loss. Supposethe target

domain has weightα and there areβm target training instances. Then we scale the loss of

target training instance byα
β

and the loss of a source training instance by1−α
1−β

.

Figure 4.2 shows a series of plots of equation 4.1 (top row) coupled with corresponding

plots of test error (bottom row) as a function ofα for different amounts of source and

target data and different distances between domains. In each column, a single parameter

(distance, number of target instancesmT , or number of source instancesmS) is varied

while the other two are held constant. Note thatβ = mT

mT +mS
. The plots on the top row of

figure 4.2 are not meant to be numerical proxies for the true error (For the source domains
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“books” and “dvd”, the distance alone is well above1
2
). Instead, they are scaled to illustrate

that the bound is similar in shape to the true error curve and that relative relatinships are

preserved. Note that by choosing a differentC in equation 4.1 for each curve, one can

achieve complete control over their minima. In order to avoid this, we only use a single

value ofC =1600 for all 12 curves on the top side of Figure 4.2.

First note that in every pair of plots, the empirical error curves, like the bounds, have

a roughly convex shape. Furthermore the value ofα which minimizes the bound also

has low empirical error for each corresponding curve. This suggests that choosingα to

minimize the bound of Theorem 4 and subsequently training a classifier to minimize the

empirical error̂εα(h) can work well in practice, provided we have a reasonable measure

of complexity. Column (a) shows that more distant source domains result in higher target

error. Column (b) illustrates that for more target data, we have not only lower error in

general, but also a higher minimizingα.

Finally, column (c) depicts the limitation of distant source data. With enough target

data, no matter how much source data we include, we always prefer to use only the target

data. Intuitively this is because for any source domain withnon-zero distance from the

target, we cannot achieve zero error relative to the best target hypothesis. This is reflected

in our bound as a phase transition in the optimal value ofα (Figure 4.3). As we increase

the number of target instances, once the number crosses the thresholdmT = C
ζ(US ,UT )2

,

using source data can only add noise, and thus we always prefer to use only target data.

4.5 Learning from multiple sources

We now explore an extension of our theory to the case of multiple source domains. We

are presented with data fromN distinct sources. Each sourceSj is associated with an

unknown underlying distributionDj over input points and an unknown labeling function

fj. From each sourceSj, we are givenmj labeled training instances, and our goal is to use

these instances to train a model to perform well on a target domain〈DT , fT 〉, which may
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or may not be one of the sources. This setting is motivated by several domain adaptation

algorithms [37, 13, 39, 24] that weigh the loss from traininginstances depending on how

“far” they are from the target domain. That is, each traininginstance is its own source

domain.

As in the previous sections, we will examine algorithms thatminimize convex combi-

nations of training errors over the labeled examples from each source domain. As before,

we let mj = βjm with
∑N

j=1 βj = 1. Given a vectorα = (α1, · · · , αN) of domain

weights with
∑

j αj = 1, we define the empiricalα-weighted error of functionh as

ε̂α(h) =
N
∑

j=1

αj ε̂j(h) =
N
∑

j=1

αj

mj

∑

x∈Sj

|h(x)− fj(x)| .

The trueα-weighted errorεα(h) is defined in the analogous way. LetDα be a mixture

of theN source distributions with mixing weights equal to the components ofα. Finally,

analogous toλ in the single-source setting, we define the error of the multi-source ideal

hypothesis to be

γ = min
h
{εT (h) + εα(h)} = min

h
{εT (h) +

N
∑

j=1

αjεj(h)} .

The following theorem gives a learning bound for empirical error minimization using the

empiricalα-weighted error.

Theorem 5 Suppose we are givenmj labeled instances from sourceSj for j = 1 . . . N .

For a fixed vector of weightsα, let ĥ = argminh∈H ε̂α(h), and leth∗
T = argminh∈H εT (h).

Then for anyδ ∈ (0, 1), with probability at least1 − δ (over the choice of samples from

each source),

εT (ĥ) ≤ εT (h∗
T ) + 2

√

√

√

√

N
∑

j=1

α2
j

βj

√

d log 2m− log δ

2m
+ 2

(

γ +
1

2
dH∆H(Dα, DT )

)

.

The full proof is in appendix A.4. Like the proof of Theorem 4,it is split into two parts.

The first part bounds the difference between theα-weighted error and the target error
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Figure 4.4: A 1-dimensional example illustrating how non-uniform mixture weighting can

result in minimal error. We observe one feature, which we useto predict gender.(a) At

train time we observe more females than males.(b) Learning by uniformly weighting the

training data causes us to learn a suboptimal decision boundary, (c) but by weighting the

males more highly, we can match the target data and learn an optimal classifier.

similar to lemma 1. The second is a uniform convergence boundfor ε̂α(h) similar to

lemma 2.

Theorem 5 reduces to Theorem 4 when we have only two sources, one of which is the

target domain (that is, we have some small number of target instances). It is more general,

though, because by manipulatingα we can effectively change the source domain. At the

same time, we must pay for this generality by strengthening our assumptions. Now we de-

mand that for everyα-weighted convex combination of sources, there exists a hypothesis

h∗ which has low error on both the combination of sources and thetarget domain. Second,

we measure distance between the target and a mixture of sources, rather than between the

target and a single source.

One question we might ask is whether there exist settings where a non-uniform weight-

ing can lead to a significantly lower value of the bound than a uniform weighting. This

can happen if some non-uniform weighting of sources accurately approximates the target

domain. As a hypothetical example, suppose we are trying to predict gender from height

(Figure 4.4). Each instance is drawn from a gender-specific Gaussian. In this example, we

can find the optimal classifier by weighting the “males” and “females” components of the
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source to match the target.

4.6 Related work

Domain adaptation is a widely-studied area, and we cannot hope to cover every aspect and

application of it here. Instead, in this section we focus on other theoretical approaches to

domain adaptation. While we do not explicitly address the relationship in this thesis, we

note that domain adaptation is closely related to the setting of covariate shift, which has

been studied in statistics. The covariate shift setting is one wherePrS [x] 6= PrT [x], but

PrS [y|x] = PrT [y|x]. In addition to the work of Huang et al. [37], several other authors

have considered learning by assigning separate weights to the components of the loss

function corresponding to separate instances. Bickel at al.[13] and Jiang and Zhai [39]

suggest promising empirical algorithms that in part inspire our Theorem 5. We hope that

our work can help to explain when these algorithms are effective. Dai et al. [24] considered

weighting instances using a transfer-aware variant of boosting, but the learning bounds

they give are no stronger than bounds which completely ignore the source data.

Crammer et al. [23] consider learning when the marginal distribution on instances is

the same across sources but the labeling function may change. This corresponds in our

theory to cases wheredH∆H = 0 but λ is large. Like us they consider multiple sources,

but their notion of weighting is less general. They consideronly including or discarding a

source entirely.

4.7 Summary

This chapter described a theoretical framework for domain adaptation.A key part of this

framework is theH∆H-distance, a measure of divergence between distributions that is

directly related to classification error.We can use theH∆H-distance to estimate the

relative loss due to adaptation for different pairs of domains from onlyunlabeleddata.
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The main theoretical result of this chapter is theorem 4, a learning bound for a procedure

which minimizes a convex combination of empirical source andtarget errors. This bound

can be used to decide on an effective tradeoff between sourceand target training data.
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Chapter 5

Conclusion

Adapting statistical models to new domains is a crucial partof applying text processing

systems in the real world. Domain adaptation addresses the situation in which we possess

a large amount of labeled data from a source domain to train a model but little or no

labeled data from a target domain where we wish to apply the model. To the best of

our knowledge, this thesis represents the first attempt to address domain adaptation for

text by learning representations which minimize the divergence between source and target

domains.

Linear discriminative models for text achieve state-of-the-art results by creating fea-

tures based on vocabulary items. Algorithms for estimatinglinear models assume that the

training and testing data are drawn from the same distribution, but for domain adaptation,

this is not true. Differences in vocabulary create different distributions over features, and

this difference in the feature space leads empirically to significant increases in error. The

first part of this thesis, in chapters two and three, introduced an algorithm for domain

adaptation called structural correspondence learning (SCL) and examined its performance

on two text processing tasks. The second part, in chapter four, gave a formal definition

for domain adaptation and proved generalization bounds forthe setting when training data

and testing data are drawn from different distributions.
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SCL is a variant of the structural learning paradigm of Ando and Zhang [3], a semisu-

pervised method which uses unlabeled data to discover a predictive subspace. SCL uses

the techniques of structural learning to discover a subspace which is simultaneously pre-

dictive for both source and target domains. The key concept behind SCL is the selection

of pivot features which link the two domains. With these pivot features in hand, we learn

a representation by finding a linear projectionΦ from our original feature space onto a

low-dimensional subspace that is most predictive of the presence of pivots in a particular

instance. This subspace implicitly aligns features from different domains because if two

non-pivot features are both predictive for the same set of pivots, then these features are

mapped to the same area of the low-dimensional subspace. We can then train models us-

ing the projection of an instance onto this feature subspace, with the intention that they

will generalize better to the target domain. In chapter three, we demonstrated the effec-

tiveness of SCL on models for sentiment classification and part of speech tagging. We

showed that with only unlabeled target data, SCL can significantly improve the perfor-

mance of a state-of-the-art linear model, and we explored combining SCL with methods

for incorporating both source and target labeled data. In situations when we have a small

amount of target data, SCL can make an even larger improvement.

In chapter 4, we developed a formal framework for analyzing differing source and

target domains. Standard generalization theory bounds thedifference in training and test

performance when training and test sets are samples from thesame distribution. Our

theory yields bounds on the difference in performance that are based on the divergence

between the training and test distributions. While the divergence between arbitrary dis-

tributions is not measureable in general, we showed how a simple assumption can allow

us to measure the divergence using only unlabeled data. If weassume that there exists a

single predictor which is effective in both domains, then wecan represent the divergence

using the hypothesis class from which our predictors are drawn. We call this divergence

theH∆H-divergence, and it allows us to prove a generalization bound which we can

compute from finite samples of unlabeled data.

80



The representation learned by SCL significantly decreases theH∆H-distance between

the two domains, and as such significantly decreases the value of the generalization bound.

We can also use theH∆H-divergence to prove a bound for the setting in which we have

available both source and target labeled data. In this setting, we examined algorithms

which minimize convex combinations of source and target error. The resulting general-

ization bound intuitively captures the tradeoff between using the large but biased source

training data and using the small but unbiased target training data. We showed for the

sentiment classification dataset that our bound makes accurate predictions about the rela-

tive error of different amounts of source and target training data and different divergence

among domains.

We examined both the practical and theoretical sides of domain adaptation. The theory

we developed addresses representation abstractly, though, and it doesn’t give any insights

into when and how SCL can perform well. In chapter two, we linked SCL to the statisti-

cal method of canonical correlation analysis (CCA). Kakade and Foster [40] showed how

CCA can be useful in a multi-view semisupervised learning setting. They proposed first

learning a representation using CCA on unlabeled data. Then they used that representa-

tion when estimating the parameters of a supervised linear model. They showed that the

resulting CCA-based representation results in good predictors under a simple assumption:

The optimal classifier from each view alone must have low regret with respect to the joint

optimal classifier from both views.

Unfortunately, this assumption is too strong to permit an analysis of SCL analogous

to their analysis of CCA. But it does seem natural to relax the assumptions of Kakade and

Foster to incorporate an intermediate representation: onein which one view is sufficient

for learning an optimal classifier for nearly every instance, but where we don’t know a

priori which view it is. Such an analysis would provide direct theoretical justification

for SCL, and we believe it will ultimately lead to new, simpleralgorithms for domain

adaptation.
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Appendix A

Appendix

A.1 Proof of theorem 2

Let Zh ∈ AH denote the halfspace associated with hypothesish, and letZC
h be the com-

plement of this halfspace. We need to show that

2− 2 min
h∈H

[ε̂S(h, 1) + ε̂T (h, 0)] = max
h∈H
|PrUS

[Zh]− PrUT
[Zh]|

max
h∈H

[2− 2εS(h, 1) + εT (h, 0)] = max
h∈H
|PrUS

[Zh]− PrUT
[Zh]|

It suffices to show that for everyh ∈ H

2− 2 [εS(h, 1) + εT (h, 0)] = |PrUS
[Zh]− PrUT

[Zh]| .

Let I [x ∈ US] be the indicator function which is 1 when the vectorx is a member of the

sample. Below, when we write
∑

x
, this indicates a summation over only thosex in our

joint sampleUS

⋃

UT .

2− 2 [εS(h, 1) + εT (h, 0)] = 2−
2

m





∑

x,h(x)=0

I [x ∈ UT ] +
∑

x,h(x)=1

I [x ∈ US]




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=
1

m

∑

x,h(x)=0

(I [x ∈ UT ] + I [x ∈ US]) +
1

m

∑

x,h(x)=1

(I [x ∈ UT ] + I [x ∈ US])

−
2

m





∑

x,h(x)=0

I [x ∈ UT ] +
∑

x,h(x)=1

I [x ∈ US]





=
1

m

∑

x,h(x)=0

(I [x ∈ US]− I [x ∈ UT ]) +
1

m

∑

x,h(x)=1

(I [x ∈ UT ]− I [x ∈ US])

=
1

2
|PrUS

[Zh]− PrUT
[Zh]|+

1

2

∣

∣PrUS

[

ZC
h

]

− PrUT

[

ZC
h

]∣

∣

= |PrUS
[Zh]− PrUT

[Zh]|

The last step follows from the identityPrU
[

ZC
h

]

= 1− PrU [Zh].

A.2 Proof of theorem 3

Below we use4ineq to indicate that a line of the proof follows by application ofthe

triangle inequality [10, 23].

εT (h) ≤ εT (h∗) + εT (h, h∗) 4ineq

≤ εT (h∗) + εS(h, h∗) + |εT (h, h∗)− εS(h, h∗)| 4ineq

≤ εT (h∗) + εS(h, h∗) +
1

2
dH∆H(DS,DT )

≤ εT (h∗) + εS(h) + εS(h∗) +
1

2
dH∆H(DS,DT ) 4ineq

= εS(h) +
1

2
dH∆H(DS,DT ) + λ 4ineq

≤ εS(h) +
1

2
d̂H∆H(US,UT ) + 4

√

2d log(2m′) + log(4
δ
)

m′
+ λ

The last step in the proof is an application of theorem 3.4 from [12], together with the

observation that since we can represent everyg ∈ H∆H as a linear threshold network of

depth 2 with 2 hidden units, the VC dimension ofH∆H is at most twice the VC dimension

ofH [6].
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A.3 Proof of main theorem

A.3.1 Proof of lemma 1

|εα(h)− εT (h)| = (1− α)|εS(h)− εT (h)|

≤ (1− α) [|εS(h)− εS(h, h∗)|+ |εS(h, h∗)− εT (h, h∗)|+ |εT (h, h∗)− εT (h)|]

≤ (1− α) [εS(h∗) + |εS(h, h∗)− εT (h, h∗)|+ εT (h∗)] 4ineq

≤ (1− α)(
1

2
dH∆H(DS,DT ) + λ)

A.3.2 Proof of lemma 2

We begin by restating Hoeffding’s inequality.

Hoeffding’s inequality

If X1, X2, . . . , Xn are independent andai ≤ Xi ≤ bi(i = 1, 2, . . . , n), then forε > 0

Pr
[

|X̄ − E[X̄]| ≥ ε
]

≤ 2e−2n2ε2/
∑n

i=1(bi−ai)
2

,

whereX̄ = (X1 + · · ·+ Xn)/n.

Let X1, . . . , Xβm be random variables that take on the valuesα
β
|h(x)− fT (x)| for the

βm instancesx ∈ ST . Similarly, letXβm+1, . . . , Xm be random variables that take on the

values1−α
1−β
|h(x) − fS(x)| for the(1 − β)m instancesx ∈ SS. Note thatX1, . . . , Xβm ∈

[0, α
β
] andXβm+1, . . . , Xm ∈ [0, 1−α

1−β
]. Then

ε̂α(h) = αε̂T (h) + (1− α)ε̂S(h)

= α
1

βm

∑

x∈ST

|h(x)− fT (x)|+ (1− α)
1

(1− β)m

∑

x∈SS

|h(x)− fS(x)|

=
1

m

m
∑

i=1

Xi.
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Furthermore, by linearity of expectations

E[ε̂α(h)] =
1

m

(

βm
α

β
εT (h) + (1− β)m

1− α

1− β
εS(h))

)

= αεT (h) + (1− α)εS(h) = εα(h).

So by Hoeffding’s inequality the following holds for everyh.

Pr [|ε̂α(h)− εα(h)| ≥ ε] ≤ 2 exp

(

−2m2ε2

∑m
i=1 range2(Xi)

)

= 2 exp







−2m2ε2

βm
(

α
β

)2

+ (1− β)m
(

1−α
1−β

)2







= 2 exp

(

−2mε2

α2

β
+ (1−α)2

1−β

)

.

The remainder of the proof for hypothesis classes of finite VCdimension follows a

standard argument. In particular, the reduction to a finite hypothesis class using the growth

function does not change [64, 6]. This, combined with the union bound gives us the

probability that there existsanyhypothesish ∈ H, |ε̂α(h)− εα(h)| ≥ ε. Substitutingδ for

the probability and solving gives the lemma

ε =

√

(

α2

β
+

(1− α)2

1− β

)

d log(2m)− log δ

2m

A.3.3 Proof of theorem 4

The proof follows the standard set of steps for proving learning bounds [6], using Lemma 1

to bound the difference between target and weighted errors and Lemma 2 for the uniform

convergence of empirical and true weighted errors. Below we use L1, L2, and Thm3

to indicate that a line of the proof follows by application ofLemma 1, Lemma 2, or
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Theorem 3 respectively.

εT (ĥ) ≤ εα(ĥ) + (1− α)

(

1

2
dH∆H(DS,DT ) + λ

)

(L1)

≤ ε̂α(ĥ) +

√

(

α2

β
+

(1− α)2

1− β

)

d log(2m)− log δ

2m
+(1− α)

(

1

2
dH∆H(DS,DT )+λ

)

(L2)

≤ ε̂α(h∗
T )+

√

(

α2

β
+

(1− α)2

1− β

)

d log(2m)− log δ

2m
+(1− α)

(

1

2
dH∆H(DS,DT )+λ

)

≤ εα(h∗
T )+2

√

(

α2

β
+

(1− α)2

1− β

)

d log(2m)−log δ

2m
+(1− α)

(

1

2
dH∆H(DS,DT )+λ

)

(L2)

≤εT (h∗
T )+2

√

(

α2

β
+

(1− α)2

1− β

)

d log(2m)−log δ

2m
+2(1− α)

(

1

2
dH∆H(DS,DT )+λ

)

(L1)

≤ εT (h∗
T )+2

√

(

α2

β
+

(1− α)2

1− β

)

d log(2m)−log δ

2m
+

2(1− α)





1

2
dH∆H(US,UT ) + 4

√

2d log(2m′) + log(4
δ
)

m′
+ λ



 (Thm 3)

A.4 Proof of theorem 5

Lemma 3 Leth be a hypothesis in classH. Then|εα(h)− εT (h)| ≤ dH∆H(Dα,DT )+γ ,

Proof:

|εα(h)− εT (h)| ≤ [|εα(h)− εα(h, h∗)|+ |εα(h, h∗)− εT (h, h∗)|+

|εT (h, h∗)− εT (h)|] 4ineq

≤ [εα(h∗) + |εα(h, h∗)− εT (h, h∗)|+ εT (h∗)] 4ineq

≤ (
1

2
dH∆H(Dα,DT ) + γ)
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Lemma 4 LetH be a hypothesis space of VC-dimensiond. If a random labeled sample

of sizem is generated by drawingβjm points fromDj, and labeling them according tofj,

then with probability at least1− δ (over the choice of the samples), for everyh ∈ H:

|ε̂α(h)− εα(h)| <

√

√

√

√

∑

j

α2
j

βj

√

d log(2m)− log δ

2m

Proof: Because of its similarity to the proof of Lemma 2 (in Appendix A.3.2), we will

omit some details of this proof. LetX1, . . . , Xβjm be random variables that take on the

valuesαj

βj
|h(x)− fj(x)| for theβjm instancesx ∈ Sj. Note thatX1, . . . , Xβjm ∈ [0,

αj

βj
].

Then

ε̂α(h) =
N
∑

j=1

αj ε̂j(h) =
N
∑

j=1

αj
1

βjm

∑

x∈Sj

|h(x)− fj(x)| =
1

m

m
∑

i=1

Xi.

By linearity of expectations again, we haveE[ε̂α(h)] = εα(h).

By Hoeffding’s inequality the following holds for everyh.

Pr [|ε̂α(h)− εα(h)| ≥ ε] ≤ 2 exp

(

−2m2ε2

∑m
i=1 range2(Xi)

)

= 2 exp





−2mε2

∑

j

α2
j

βj



 .

The remainder of the proof is identical to the proof of lemma 2.

The proof of theorem 5 uses lemmas 3 and 4 and follows an identical argument to the

proof of Theorem 4.
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