DOMAIN ADAPTATION OF NATURAL LANGUAGE
PROCESSING SYSTEMS

John Blitzer

A DISSERTATION

Computer and Information Science

Presented to the Faculties of the University of Pennsyé&vanPartial

Fulfillment of the Requirements for the Degree of Doctor oflédophy

2007

Fernando Pereira
Supervisor of Dissertation

Rajeev Alur
Graduate Group Chairperson



Acknowledgements

My first thanks must go to Fernando Pereira. He was a wondeduisor, and every
aspect of this thesis has benefitted from his insight. Ats$ilngas a difficult, even unruly
graduate student, and Fernando had patience with all m,idelaether good or bad.
What I'll miss most, though, is the quick trip to Fernando’ce, coming away with new
insights on everything from numerical underflow to the stdtdhe academic community

in machine learning and NLP.

In addition to Fernando, this thesis was shaped by a greaintbee. Having Ben
Taskar as committee chairman has given me the perfect exzsusterrupt his workday
with new, ostensibly-thesis-related machine learningasdeMark Liberman and Mitch
Marcus brought a much-needed linguistic perspective t@sitton language, and many
of the techniques described are based on work by Tong Zhamgkimdly served as my
external committee member. Although he didn’t directlyveeon my committee, Shai
Ben-David got me started on the theoretical aspects of thik,vamd chapter 4 grew out

of work | co-authored with him.

| was also fortunate to have a great academic family. Withhens (and one sister!)
like these, weekly “Pereira group” meetings were somethigays looked forward to.
Ryan McDonald and | academically “grew up” together, andesinis graduation, | have
often missed his Canadian cool presence. Herr ProfessooDdéktov Shiomo Crammer,
Ph.D. has been a mentor and friend for the past four yearsl Bemal, as a fellow fan
of the Maestro of zerg, | hope this is not the closing “GG” om tine together. Qian Liu
EHME— AT LK, and not being able to shout at her across the cubicle ditiaeteft a



definite void in my life. Mark Dredze taught me how conduciasker dairy meals are
to coming up with good research ideas. | already miss the ®@gntho Ganchev” humor
of Kuzman Ganchev. o Graca is without a doubt my favorite ninja: May your seoise
balance always be with you, my friend. Alex Kulesza desemgsincerest thanks for his
many counterexamples and Pe@psHe kept learning theory fun and sugary. And Partha
Pratim Talukdar, may there never be a Lakshmana Rekha betygeen

| was fortunate enough to spend time with Lawrence Saul andthdents Fei Sha and
Kilian Weinberger. My original interest in dimensionalitgduction for language is the
result of conversations and collaborations with them. leame was like a second advisor
to me: always helpful and always willing to listen patientty my latest hare-brained
scheme. Fei was and still is an endless source of advice oty meary topic. Kilian, our
attempts at combining psychoanalysis with machine legrhave been some of the most
fun times in graduate school for me.

Many other friends also buoyed my spirits throughout the pias/ears. Coffee breaks
won't be the same without my fellow (very) amateur ancientdierranean historian
Nikhil Dinesh. Yuan Ding’s deep knowledge of ice age faunfp&é me in many ways
to take life less seriously. Liang Huang 3: How will | contenmy study of “zan he
wo” without you? | am also indebted to Anne Bracy, Bill Kandyl&&ng Li, Rene Liu,
Yun Mao, Andrew McGregor, Ted Sandler, Jenn Wortman, and B&o Xor their great
attitudes and good humor.

Finally, | thank my mother and father, and my sisters Elealaore, Amy, Mary, and
Grace. Their love and support have made my graduate sch@a@rcand all of my work,

worthwhile. | dedicate this thesis to them.



ABSTRACT
DOMAIN ADAPTATION OF NATURAL LANGUAGE PROCESSING SYSTEMS
John Blitzer

Fernando Pereira

Statistical language processing models are being apmied tever wider and more
varied range of linguistic domains. Collecting and curatiagning sets for each different
domain is prohibitively expensive, and at the same timeetiffices in vocabulary and
writing style across domains can cause state-of-the-pdrsised models to dramatically
increase in error.

The first part of this thesis describes structural corredpooe learning (SCL), a
method for adapting linear discriminative models from rese-richsourcedomains to
resource-pootargetdomains. The key idea is the usep¥ot features which occur fre-
guently and behave similarly in both the source and targetailos. SCL builds a shared
representation by searching for a low-dimensional featubspace that allows us to accu-
rately predict the presence or absence of pivot featureslabeled data. We demonstrate
SCL on two text processing problems: sentiment classifioadioproduct reviews and
part of speech tagging. For both tasks, SCL significantly owgs over state of the art
supervised models using only unlabeled target data.

In the second part of the thesis, we develop a formal framlefasranalyzing domain
adaptation tasks. We first describe a measure of divergéme@{ A -divergence, that
depends on the hypothesis cldgsfrom which we estimate our supervised model. We
then use this measure to state an upper bound on the trueedamgeof a model trained to
minimize a convex combination of empirical source and taegers. The bound charac-
terizes the tradeoff inherent in training on both the largardity of biased source data and
the small quantity of unbiased target data, and we can campfrom finite labeled and
unlabeled samples of the source and target distributiodsrurelatively weak assump-
tions. Finally, we confirm experimentally that the boundresponds well to empirical

target error for the task of sentiment classification.
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Chapter 1

Introduction

Statistical language processing tools are being applieshtever wider and more varied
range of linguistic data. Researchers and engineers arg stsitistical models to organize
and understand financial news, legal documents, biomealisatacts, and weblog entries,
among many other domains. Many of these models are supgtigparameter estimation
time — A human annotator must create a training set of exasrfplethe relevant task.
Because language varies so widely, collecting and curatanging sets for each different
domain is prohibitively expensive. At the same time, defeces in vocabulary and writing
style across domains can cause state-of-the-art sup@misdels to dramatically increase
in error. Domain adaptation methods provide a way to altevike problem of creating
training sets for different domains by generalizing modedsn a resource-riclsource

domain to a different, resource-pdargetdomain.

This thesis investigates both the empirical and theoretispects of domain adap-
tation. The first half describes structural corresponddeaming (SCL), a method for
domain adaptation which uses unlabeled data to inducespmnelences among features
from different domains. SCL first learns a mapping from thehkigmensional feature
spaces commonly used for text processing to a low-dimeakieal-valued space. Cor-

respondences are encoded implicitly in the structure afldw-dimensional space. We

1



demonstrate SCL for two text processing tasks: part of spegging and sentiment clas-
sification. For each of these tasks, SCL significantly redtleegrror of a state-of-the-art
discriminative model.

The latter half of this thesis focuses on characterizingitéigcally the conditions un-
der which domain adaptation algorithms can be expected iorpe well. We give a
formal definition of domain adaptation, and we use this didinito provide an upper
bound on the generalization error of a source model in a neyetaomain. Our theory
illustrates how the right feature representation is ciuciedomain adaptation, and we
show that for both part of speech tagging and sentimentititzgson, the feature space
learned by SCL results in smaller values for the bound on .eFfuorally, we extend our
theory to the case in which we have small amounts of labelg@t#raining data. In this
setting, we give a bound that explicitly models the tradéodtt arises from training on

both a large but biased source sample and a small but unlbeged sample.

1.1 Supervised models

This thesis is about domain adaptation of statistical met@ mapping an input text to
an output label. These models are called supervised beeausain them by giving them
examples of input and output pairs. For example, we may densi model which takes
as input a review of a particular product and produces asubatpating indicating how
much the reviewer liked the product. In this section we idtrce linear discriminative
models, a common paradigm in supervised learning that hexs égpecially successful
for text processing. Structural correspondence learmingsigned to adapt linear models
to new domains, and the SCL algorithm itself involves tragninultiple linear predictors
on unlabeled data. Here we describe background for unaeiisgaSCL, including feature
representations, loss functions, optimization techrsgaad generalization theory.
Many state-of-the art text processing systems use some dbrimear discrimina-

tive modeling, and it has been a staple of speech and languagessing for several

2



Input Feature vectok

a:1.0
book: 1.0

—>| computer : 0.0
horrible dogs 0.0

A horrible book,

Model Prediction

hilbert : 0.0
horrible : 2.0

*

argmax,cy s(X,y) > ¥y

Output choicey/

positive

negative

Figure 1.1: Schematic of a supervised model for classifying product reviews. nGiveinput
review of a book (far left), we first represent it as a feature vecfosupervised model scores
combinations of feature vectors and outputs (either positive or negatidaketurns the top-scoring

label for this input (right).

decades. A complete discussion is well beyond the scopeasofttesis, but we refer the
reader to Hastie et al. [34] for an introduction to supemigsarning and to Manning
and Sclitze [45] and Jelinek [38] for overviews of its use in natlealguage process-
ing. Shawe-Taylor and Cristianini [58] is a good referenaesfgpport vector machines, a

particularly popular method for training and representingar models.

1.1.1 Feature representations for text

The first step in building a supervised model is to designuiest of the input which we
believe will be helpful in predicting the output. Let us netuio our previous example.
What features of a product review are useful for predictingtemtial rating? It turns out
that for this problem, the presence or absence of partiewads in the text are excellent

features. For instance, the presence of the word “horrilslejood indication that the

3



document expresses negative sentiment and should get atiogy.r

Once we have decided on the features to use, we represeninpathnstance as a
vector, where each dimension in the vector corresponds aoteplar feature (figure 1.1).
Such vectors are typically high-dimensional and sparseveluse words as our feature
representation, then the dimensionality of an input feauactor is the size of the vocab-
ulary (in the tens or hundreds of thousands). For a particdldaument, however, only a
few words will be present. In figure 1.1, for example, only ti@ensions corresponding

to “a”, “book” and “horrible” have non-zero value.

1.1.2 Linear discriminative models

A supervised model chooses a feature vest@nd potential output using a scoring
function s(x, y). Finding the best output amounts to choosing the ougputhich has
the highest score (right-hand side of figure 1.1). Linear @®dompute the scorgx, y)
of an input and output pair using as a linear function of a Weigctorw. The simplest
such models that we will address here are binary lineari@ilzason models. In this case,
Y={-1,1}and

SW(X, y) = y(wlx) ’

wherew is a weight vector ane/’x is the inner product of with x. Sincey € {—1,1},

the top-scoring labe} is the same as the sign of the inner product

y* = argmax y(w'x) = sgnw'x) .
)
Aside from providing an important foundation on which moogRisticated linear models
are built, binary linear predictors play an especially imaot role in this thesis. As we
shall see in chapter 2, the SCL algorithm itself involvesiirag hundreds or thousands of

binary predictors.



Multiclass and structured linear modeling

For many learning problems, the set of possible laBeis much larger than two. For
example, we apply our domain adaptation techniques to #kedtigpart of speech tagging
(chapter 3), where the goal is to assign a sequence of papeeth tags to the words in
a sentence. In this case, the number of possible sequermes gxponentially with the
length of the sentence. For problems with more than two $alved use a fixed mapping
¢(x,y) to create a sparse vector representation of input-outdus!paAs before, we

compute the score using an inner product

The model then outputs the top-scoring label

y* = argmax w'{(x,y) .
y

For a fixed small set of labels, as in standard multiclassifleation, we can crea@x, y)
by concatenating the appropriate label with each featulnés Jives us a new vector of
dimension|Y|d, whered is the dimensionality of the original feature vectgrdefined as

follows:

1, i=dy+j, forsomej <d and x; =1

0, otherwise

For learning problems such as part of speech tagging, nd&unguage parsing, and
machine translation, the number of labels is large enoughttbating labels as atomic
units is both statistically and computationally infeasibln these tasks the labels them-
selves have internal structure that we can take advantage dagsigning the mapping
¢(x,y). Because of this, models which solve these tasks are oftenredfto as structured
predictors [42, 57, 60]. Methods for structured predictiaunst factor problems so as to be
able to perform computationally efficient inference and ¢cable to make accurate pre-

dictions. When we investigate adapting part of speech tagger show how to integrate

When we need to distinguish this vector from the input featapgesentation of the previous section,
we will refer to this vector as th¢ vector.



SCL with a structured linear predictor (chapter 3), but iafee and learning algorithms
for structured prediction are not central to the ideas & thesis. For a good introduction

to structured prediction problems and algorithms, we refdiaskar [60].

1.1.3 Parameter estimation techniques

In section 1.1.2 we showed how to choose the best output fartecplar input, given that
we already have a linear model in hand. In this section wdlpnieview techniques for
finding a linear model (parameterized by the weight veetdrgiven a training sample
{(xi, yl-)}fil. We will refer to these techniques as parameter esimtatioraiming proce-

dures. Let the error of a linear modelfor a particular instancex, y) be the 0-1 indicator

variable

argmax Sy (X,y) # y

] 0, argmax,.y Sw(X,y) =y
yey

17 argmaxyey Sw (X7 y) 7& )

A natural criterion forw is to choose the mode¥* which has minimum training error

N

1
w* = argmin — argmax Sw(X;, ¥) 7 i
w N ZZ:; |: yey

Unfortunately, finding the minimum error linear model is qmmtationally intractable,
even to approximate [11]. Instead we choose to minimize &eonpper bound on the
error, also called a loss function. For binary classifiagteloss function maps the score
that a model gives to an instange’x to a number indicating the penalty we assign to the
model for scoring an instance this way. The error functiselftis a kind of loss, where
we assign a penalty of one to an instance whose score is széno and a penalty of
zero to an instance whose score is greater than or equaldo kethis thesis, we will

minimize a regularized training loss

N
1
argvlvmnﬁizll/(yiw'x) + A|[w]]3 . (1.2)

6



(a) Graph of loss functions versus score of  (p) Stochastic gradient descent algorithm

a linear model for binary prediction for parameter estimation of a linear model
6 v w ‘ :
] —Error Input: labeled datd (x;, v:)7_ }
Sy - Hinge loss ||
Al " -8-Huber loss| | Output: A weight vectorw”
a3l n | fort=0...7 -1
B3
- ol witl — wt —
1 1 (5% Ly 1w % 11) lwt + 2Aw')
0 | end
-2 -1 0 1 2
Score

Figure 1.2:(a) The error function together with two loss functions. Thedarloss is
a continuous upper bound on error, and the Huber loss is ereliffiable upper bound.

(b) The stochastic gradient descent algorithm [69] for sohaqggation 1.1

This minimization problem captures in general form many swn paradigms for training

linear classifiers. For example, using the hinge loss

—(u—1), u<l
L(u) =
0, u>1

yields a 2-norm support vector machine [58, 69]. The hings s continuous but not
differentiable. In order to directly apply unconstraine@djent minimization methods,

we minimize a differentiable version, known as the Hubesdos

—4u, u<—1
Lu)=<¢ (~u+1? —-1<u<l
0, u>1

Figure 1.2(a) depicts the error, the hinge loss, and the Hiadss as a function of the

model score.

2Not to be confused with the Huber loss for regression, whierdw not use in this thesis.

7



There are many choices of algorithm for findingva which solves equation 1.1, and
a thorough discussion of optimization techniques in mazk@arning is once again well
beyond the score of this thesis. We follow Zhang [69] and tmehsistic gradient descent.
Stochastic gradient descent is an online algorithm parizet! by a learning rate.

Figure 1.2(b) is a description of the algorithm.

Parameter estimation for multiclass and structured modelsvith MIRA

Parameter estimation for multiclass and structured lipeadlictors is more complex than
for binary classification, but many of the basic aspects endas. In this thesis, when
we solve structured prediction problems, we use the margused relaxed algorithm
(MIRA) [22]. MIRA is an online algorithm which updates the parater vector each in-
stance to give the minimum change to the weight vector (asuned by thel., norm) to
separate the correct instance from the top-scoring incomstance by a margin. Cram-
mer et al. [22] give a more complete description of the MIRAogiidhm. The application
of MIRA to structured prediction is strongly influenced by therk of Collins [19], who
described an application of the perceptron to structurediption. For a more general
discussion and comparison of optimization techniquestfactured predictors, we again

refer to Taskar [60].

1.1.4 Generalization

In section 1.1.3, we suggested to estimate the parametarsiredar model by finding a
weight vectorw* which minimizes a convex upper bound on the training erroe até
not really interested in the training set error, however. Wéat to find a model which
generalizes well to a new unseen test set. This sectiordimtes elements of statistical
learning theory which will allow us to give upper bounds oe éxpected test set error of a
model in terms of its training set error. The concepts wewdishiere provide an important
basis for chapter 4, where we give theoretical results foegaization to new domains.

Once again, we focus on binary classification and are nedgsisaef, but we refer to

8



Kearns and Vazirani [41] and Anthony and Bartlett [6] for diex@ introductions to the
concepts of learning theory.

As before, we denote by € X a feature vector in feature space. Formally, suppose
that instances are drawn from a probability distributisny) ~ D. For a particular

hypothesig: : X — ), we define the binary indicator variable
0, h(x)=
1, h(x)

The generalization error of a model is the expected erreruatler distributiorD

(h(x) £ y] = !
)

RN

€D(h) = E(x,y)ND [h(X) 7£ y] .

Suppose that we choose a hypothesis from a class of finiteneditg 7. In this case,
we may relate training and generalization error via Hoefftd inequality [35] and the
union bound. For a training samp{;, yl-}z.N:1 drawn fromD, with probability1 — 4, for

everyh € 'H,

ep(h) < %Z [h(xi) # yi] + \/210@;(2”-2) — logo .

=1

This result is a slight modification of theorem 2.3 in Anthaayd Bartlett [6]. It is an

(1.2)

example of what is known as a uniform convergence boundegistiows that the training
set error converges (aS grows large) to the generalizatoin error uniformly for gver
h € 'H. Note that the size of the hypothesis clé&$ governs the rate at which the bound

on training error converges to the generalization error.

A uniform convergence bound for linear models

Our linear models are parameterized by weight vectors R?. The number of possible
weight vectors is clearly not finite, so the bound from equati.2 does not apply. We
may still state a uniform convergence result, however,uphoa measure of hypothesis
class complexity known as the Vapnik-Chervonenkis (VC) disi@m [65]. For a given

training sampleS of size N, the number of possible unique partitions of the points into

9



two classes i€”". But note that for a given dimensiehand number of points’, not all
partitions can be modeled using a linear predictor. To ssertbte that for three points in
two dimensions, we can model each of the eight possibletipadiwith linear classifiefs
but for four points in two dimensions, we cannot model eacthefl6 possible partitions
with binary linear classifiers. When we can model all posgialditions of a set of points

S with a hypothesis clas¥, we will say thatH shattersS.

For a hypothesis clagg, the Vapnik-Chervonenkis dimension is the size of the larges
subsetS that can be shattered By. For linear classifiers parameterized¥wyc R¢, the
VC dimension isd + 1 [65, 6]. The VC dimension is a measure of the complexity of a
hypothesis class. With itin hand, we may prove the followingorm convergence bound

for linear classifiers:

Let R? denote the space of parameter vectors for linear classiffersa training sample

{xi, yi}f\il drawn fromD, with probability1 — &, for everyw € R?,

> sariwx) # ] + 0 <\/ Hog N/ log@) @y

Note thatd log(N/d) takes the place dég(|H|) in the earlier uniform convergence bound.
In this bound, the larger the dimensidmf the weight vector, the slower the training error

converges to the generalization error.

As a final comment, we note that other measures of compleaityead to significantly
tighter bounds than VC dimension, but the precise measurgaaithesis class complexity
is not essential to the theory in this thesis. We chose the Mtmkion for its ease of
exposition. For margin-based measures of complexity wer rief Anthony and Bartlett
[6]. Shawe-Taylor and Cristianini [58] give a good introdaatto data-dependent bounds

and the Rademacher measure of complexity [8].
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(a) Book Review (b) Kitchen Appliance Review
Running with Scissors: A Memoir

Avante Deep Fryer, Chrome & Black
Title: Horrible book, horrible.
Title: lid doesnot work well...
This book was horrible. tead half of it,
| love the way the Tefal deep fryer cook]

1Y

suffering froma headachehe entire time,
however, | amreturning my second one
and eventually i lit it on fire. Onkess copy
due to adefectivelid closure. The lid may

in the world...don’t waste your money.
close initially, but after a few uses it no
wish i had the time spent reading this bopk
longer stays closed. | will not be purchas-
back so i could use it for better purposes.

ing this one again.

This book wasted my life

Figure 1.3: Sentiment classification example: reviews olsqsource) and kitchen appli-
ances (target) from Amazon. Bold words and bigrams are dtfigasimes more frequent

in one domain than in the other.

1.2 Adapting supervised models to new domains

In the previous section, our training methods for linear eiedninimized a convex upper
bound on the error. We motivated these methods by appeaingiform convergence
theory: For large training samples, the empirical error isasonable proxy for the gen-
eralization error. In many realistic applications of syiezd techniques, however, the
training data is drawn from sourcedistribution and the testing data is drawn from a dif-
ferenttargetdistribution. Because of this, we cannot expect a large sawifpbur source
data to allow us to build a good target model. In fact, as wél ska in chapter 3, realistic
differences in domains can cause discriminative linessstlirs to more than double in

error.

Figures 1.3 and 1.4 illustrate the differences that can @ppeross domains for sen-
timent classification and part of speech tagging, respelgtiwVe chose these examples

in particular because for each one, a linear predictoreérchthe source domain mis-labels

3as long as the three points are not co-linear
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(a) Wall Street Journal

DT JJ VBZ DT NN IN DT JJ NN

The clash is a sign of a new toughness

CcC NN IN NNP POS JJ JJ NN

and divisiveness in Japan s once-cozy financial circles

(b) MEDLINE
DT JJ VBN NNS IN DT NN NNS
The oncogenic mutated forms of the ras proteins
VBP RB JJ CcC VBP IN JJ NN
are constitutively  active and interfere with normal signal
NN

transduction

Figure 1.4: Part of speech tagging example: sentences fnemWall Street Journal

(source) and MEDLINE (target). Bold words are at least fiveesnmore frequent in

one domain than in the other.

the target instances. In both cases, the source and tangetinhave very different vo-
cabularies, and each new target vocabulary item corresptund new feature which is
unobserved in the source domain. In the sentiment examplassifier trained on books
incorrectly identifies the “tefal deep fryer” review as o, in part because it has never
observed the negatively-skewed featudes ecti ve, not wor k, andr et ur ni ng.

In the part of speech example, a tagger trained on the WaéSiournal (WSJ) mis-tags
si gnal as an adjective, rather than correctly as a noun. The sioghal is a frequent
noun in the biomedical domain, even though it is relativakerin the Wall Street Journal.

Furthermoref r ansduct i on is even more rare in the Wall Street Journal, making this

instance particularly hard to disambiguate.
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(a) Sentiment Classification

domain book reviews kitchen reviews

positive fascinating, engaging amgerfect, yearsiow
correspondences mustread, reader excellemroduct, abreeze
negative plot, # pages, theplastic, poorlydesigned
correspondences predictable, readinghis awkwardto, leaking

(b) Part of Speech Tagging

domain WSJ MEDLINE

adjectival political, short-term metastatic, neuronal
correspondences pretty, your functional, transient
nominal company, transaction receptors, assaysy
correspondences investors, officials mutation, lesions

Figure 1.5: Corresponding features from different domaim$bth tasks. These features
fulfill similar roles across domains. For instance, “préealde” and “leaking” both express

negative sentiment.

1.2.1 Learning feature correspondences

One recurring theme in text processing is the redundancgatfifes. The bold features
in both figure 1.3 and figure 1.4 vary significantly in frequgacross domains, but for
both tasks, many unique target features have corresporadungterpart source features
(figure 1.5). Suppose that we were given these correspoadetatuitively, we should
be able to use them to convert an effective source model madfactive target model by
representing the weight for each target feature as the pppte combination of source

feature weights.

Pivot features and unlabeled data

Structural correspondence learning (SCL) is a method fonieg these correspondences

automatically from unlabeled data. The key concept behi@d B the notion ofpivot

13



(a) Examples of pivots for sentiment classification. In the target domain (kitappliances)
all pivots co-occur with the feature def ecti ve’' ' .

book reviews kitchen reviews
The book is so repetitive that Dwt_buy the Shark portable steamer. . ..
| found myself yelling. . . . | The trigger mechanism is defective

will definitely not_buy another

A disappointment. . . . Ender was the very nice lady assured me that that
talked about for #pages altogether they must have been a defective set. . .
What adisappointment

It's unclear. . . . It's Maybe mine was defective. . . .
repetitive and boring The directions wareclear

(b) Examples of pivots for part of speech tagging. In the target domain (MEE)
all pivots co-occur with the feature current word is <signal >’ .

WSJ MEDLINE

of investmentequired  deliver the signatequired

of buy-outsfrom buyers stimulatory signdfom

go to jail for violating essential signdbr

Table 1.1: Examples of pivots in both domains, together withcontexts in which they

occur

features. Pivot features are features which occur fre¢qant behave similarly in both
the source and target domains. The right column of tablea)l st{ows pivot features for
kitchen appliances that occur together with the word “diafet. The pivot features “not
buy”, “disappointment”, “unclear” are good indicators @&gative sentiment, regardless of
domain. Similarly, the right column of table 1.1(b) showsuewles of PoS-tagging pivot
features for WSJ and MEDLINE that occur together with the wisignal”. In this case
our pivot features are all of typet he t oken on the ri ght>. Note that “signal” is
unambiguously a noun in these contexts. Adjectives ranedggrle past tense verbs such
as “required” or prepositions such as “from” and “for”.

We now search for occurrences of the pivot features in thececdomains (book re-

views and WSJ). The left column of tables 1.1(a) and (b) shaweswords that occur
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together with the pivot features in the source domains. érctise of sentiment classifica-
tion, “repetitive”, “# pages”, and “boring”. are all common ways of expressing trega
sentiment about books. In the case of part of speech tagnwgstment”, “buy-outs”,
and “jail” are all common nouns in the WSJ.

For each task structural correspondence learning usesaorence between pivot and
non-pivot features to learn a representation under whiatufes from different domains
are aligned. Note that we do not require labels to estima&setlbo-occurrences. This step
only requiresunlabeledsource and target samples. Once we have this representaéon
can use it to train a classifier from source data that is efieat the target domain as well.
Chapter 2 describes in detail methods for choosing pivotfeat learning the underlying

representation, and using that representation in discative models.

1.2.2 Generalization to new domains

In section 1.1.4, we showed how a model can generalize frorairirig sample drawn
from a distributionD to another unseen test sample frémFor domain adaptation, how-
ever, this assumption breaks down. Our source trainingisldtawn from one distribution
Dy, but we need our model to generalize to target data drawn &alifferent distribu-
tion Dy. Because of this we cannot use standard generalizationytbeprove a bound
analogous to equation 1.3.

Under what conditions o®s andD; can we expect to be able to train on a sample
from Dy and perform well on a sample frof? If Dy andD are arbitrary probability
distributions on(x, y), then we cannot expect to learn an effective model withoyt an
labeled target data. To see this note that for binary claasifin, we may choosPs and
Dr to have the same marginal distribution on instances buttkx@gposite distributions
on labels. That s,

Prp, [x] = Prp, [x]
Prp, [ylx] =1—Prpg [ylx]

wherePrp, [-] is the density (mass) function for distributi@h Now the model we choose
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by minimizing source error converges in the limit to the vigrsssible target model.
Suppose we constrails andD; such that there exists some classifiere H which
has low error on bot®gs andD,. More precisely, lek be defined as

K= 2%17111 epg(h) + ep,(h) .

Then we constrai® g andD; such thats is small. This captures intuitively the assump-
tion that we make when building a model for domain adaptatibar example, on our
product reviews task, we expect there exists a single moliehacan identify reviews of
both books and kitchen appliances as being positive or mega&ven if finding it using
only source data is difficult. With this assumption in hand,a&n prove a bound on target
error of the form

EDT(h) < 6D3<h) + K+ diV(Ds, DT) .

The term diVDg, Dr) denotes the divergence between the source and target aargin
distributionsPrp, [x] andPrp,. [x] on instances. In chapter 4, we show how to exploit
the structure of a hypothesis space to derive a divergenweebe distributions that is
computable from finite samples ahlabeleddata. We call this divergence tléAH-
divergence, and for linear models, it is closely tied to deatrepresentations we use. We
use this fact to prove that structural correspondenceilegfimds a feature representation
under which source and target distributions are close. Hh&{-divergence also plays a
key role in our theory of learning from labeled source daté small amounts of lableled

target data.

1.3 Thesis overview

Structural correspondence learning. Chapter 2 describes in detail the structural corre-
spondence learning algorithm. We first introduce the stinattearning paradigm of Ando
and Zhang [3] and show why it is well-suited for domain adapta Then we discuss the

details of SCL, including methods for selecting pivot feagjrand the hyperparameters
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necessary for combining SCL features with standard textifeat Finally, we relate struc-
tural learning and SCL to other methods for using unlabelea. d&e show that structural
learning and SCL are closely related to the statistical ntethfocanonical correlations
analysis (CCA) [36], which recent theoretical work [40] haswh can be effective for
semi-supervised learning. Aside from CCA, we also examinerséwther methods for
using unlabeled data, including graph regularization t&toapping, and instance weight-

ing, and for each we briefly discuss their feasibility for domadaptation.

Adapting linear discriminative models with SCL. Chapter 3 illustrates the use of SCL
on our sentiment classification and part of speech taggsigitaVe first demonstrate that
SCL consistently makes significant reductions in error, evghout any target labeled
data. Then we show how to use small amounts of target datthergeith SCL to achieve

even greater reductions in error. Finally, we examine iaitidie basis found by SCL.

Learning bounds for domain adaptation. Chapter 4 develops a formal framework for
analyzing domain adaptation tasks. We first show how thergiereee between two do-
mains can be computed using finite samples of unlabeled &d¢ause this divergence
to bound the target generalization error of a model traimethé source domain. This
bound depends closely on the feature representation of odeinand in particular the
representation learned by SCL gives much lower values fobthund than the standard
representation. Finally, we give a uniform convergencenieg bound on the target gen-
eralization error of a model trained to minimize a convex boration of empirical source

and target errors.
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Chapter 2

Structural correspondence learning

Structural correspondence learning (SCL) is an algorithnddonain adaptation. It learns
a shared representation for both source and target donraimsunlabeled source and
target data. SCL is a variant of the structural learning ggracf Ando and Zhang [3].
This semisupervised method uses unlabeled data to disaquedictive linear subspace
of the original hypothesis space. Section 2.1 describastsiial learning, and section 2.2
introduces the SCL algorithm itself. The key idea of SCL is tpleit pivot features which
are common to both domains. We describe methods for choeffiecjive pivots, as well

as hyperparamters used for combining SCL with standard giseerlearning methods.

The latter part of this chapter is devoted to exploring thenextion between SCL and
other semi-supervised learning techniques. By dividinghedeature space into pivot and
non-pivot features, structural learning and SCL are effettiexploiting “multiple views”
of the input data. Recent theoretical work has examined gealocorrelation analysis
(CCA) [36] to learn a norm for semi-supervised multi-view eggion [40]. We show that
structural learning and SCL are closely related to CCA, and s&uds the implications of
this for domain adaptation. Finally, we briefly review otmeethods for using unlabeled

data and discuss their suitability for domain adaptation.
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2.1 Structural learning

Supervised learning methods find a hypothesis which garesalvell from a labeled
training set to new data. For the linear models explored im ttiesis, the space of hy-
potheses consists of linear functions of the features pt@sen instance. Thus the com-
plexity of the hypothesis space is directly related to tlze sif the feature space. Strucutral
learning [3] aims to learn a new, reduced-complexity hypsit space by exploiting reg-
ularities in feature space via unlabeled data. For textthegularities come in the form
of lexical features that function similarly for predictioRor instance, prepositions such as
“with”, “on”, and “in” all are likely to precede noun phraseRecognizing this is helpful
for part of speech tagging.

Structural learning characterizes feature space regemithrough “auxiliary prob-
lems” which are carefully chosen using knowledge about theesrised task. Structural
learning finds a linear subspace of the original hypothgxse, where all of the auxiliary
problems can be solved well using predictors from this sabspIf this new hypothesis
space is much smaller than the original, but contains anllycaeurate best hypothesis,
we may expect to achieve better accuracy for smaller amatiotsta, as compared to the

original hypothesis space.

2.1.1 Finding good hypothesis spaces

The main task in supervised classification is to find a preditiapping an input (here we
assume vector} to an output label. In most formulations of this problem we select this
predictor from a hypothesis spakg Predictor goodness is evaluated using a loss function
which measures the discrepancy between the output of arghmledictor f(x) and the
associated correct labgl For a distributioriD on pairs(x, y), the optimal predictor in the

hypothesis clas# is

~

f = argmin Ep (L(f(x),y)) .
fEH
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For realistic problems, we do not have the true distribuéieailable to us, but only a finite
sample. One method for choosiriggivenH is the method of regularized empirical risk

minimization. For a sample of siz€, we solve the optimization problem

f = argmin fx),u:) + ||If
an Z I18.

In semisupervised learning, in addition to our labeled dampe also are endowed
with a large amount of unlabeled data. The basic idea behimdtaral learning is to
learn a hypothesis clag$; using the unlabeled data, whebgarameterizes the space of
hypothesis classes. Then we choose our predictor fram If the hypothesis class we
learn is good, then we expect to be able to choose a bettetidant from our labeled

sample.

2.1.2 Shared structure via auxiliary problems

From now on we will refer to the classification problem for aiiwe have labeled data
as thesupervisedproblem. The key idea in structural learning is the desigaufiliary

problems which meet the following three criteria:

1. Auxiliary problems are closely related to the supervigezblem. For instance, all
the auxiliary problems we discuss here will use the sameifeatet as the super-

vised problem.
2. Auxiliary problems are as different as possible from onetier.
3. Auxiliary problems do not require labeled data to train.

For example, suppose our supervised problem is part of bgagging, where each in-
stance consists of features over word triples, and the sagkgive the part of speech tag
of the middle word. The label fot he i nsi ghtful paper is adjective, the
part of speech tag for nsi ght f ul . One set of appropriate auxiliary problems would

be to predict the identity of the left word from features oa thiddle and right words. For
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each instance we can create one thousand left word binasifotation problems, one for
each of the one thousand most frequent left words. For mdedl de auxiliary problems,

we refer the reader to section 2.2.1 which discusses thé¢ feistures we use for SCL.

Since auxiliary problems require only unlabeled data tatewe can train reliable
auxiliary predictors from the unlabeled data. If the aaxiji problems are diverse, we
can further say that the auxiliary predictors span the spégeedictor functiongThis
will be made more precise in the next section). Intuitivelgce we designed the auxiliary
problems to be similar to the supervised problem, any comstroture they have is likely
to also be shared by a good supervised predictor. Thus if welisaover a goog@redictor

subspacdrom our auxiliary predictors, this subspace can serve asiypothesis space.

2.1.3 Joint empirical risk minimization

Suppose we create. auxiliary problems, where thé&h auxiliary problem hasV, in-
stances. Lek! € R be theith instance for théth auxiliary problem. Ando and Zhang
[3] suggest to choose the linear predictor subspace pagsimexd by the matrixp € RF*V
which minimizes the regularized empirical risk of all thexdiary problems. Each auxil-
iary predictor is characterized by two weight vectoks:on the original feature space and

v, on the feature space that has been transformed via the ngappin

m

Ny
R 1
[{vw, a2 @} = argmin » <E STL((we+ ®'ve)xt,yl) + AHwAP)
=1

weve,® T

s.t. P9’ = T .

Ando and Zhang [3] call this optimization criterion joint pirical risk minimization.
Note thatw, is regularized, but, is not. This will play an important role in the derivation
of the the alternating structural optimization algorithon minimizing the joint empirical
risk. After the derivation of the basic algorithm in sect@nd.3, we discuss the the actual

implementation that Ando and Zhang [3] use in their expenitsé section 2.1.4.
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Alternating structural optimization

In order to derive the alternating structural optimizat{&$0O) algorithm, we first intro-
duce a change of variables. For each auxiliary problem weewyi= w, — &'v, . Now

we can rewrite the optimization problem as

[{ﬁg,f’g}, (i)i| = argminz < Z L UEXZ, yl + A ||u€ — (I)/Vg||2>

ug,ve,®

S.t. (I)(I), = ]k’><k‘7

and at the optimal solution we can recover= w, — ®'v, . Now we come to the basic

formulation of the ASO:
1. Fix (®,v) and optimize with respect ta .
2. Fixu and optimize with respect t@b, v) .
3. Iterate until convergence.

Note that in step, the optimizations for each auxiliary problem decouple] are can
solve each one separately. These are just standard erhgslceninimization problems,
and if the loss functiord is convex, then we can solve them with any minimization tech-
nique. Ando and Zhang [3] suggest stochastic gradient deséée focus now on step 2,

which for fixedu, = u, yields the optimization problem

[{w},é] = argmin Y A[|G — @'vil[> St DD = I

veh® g
For fixed®, we have a least squares problem-or
min || — v, ||*
Differentiating with respect te and setting to O reveals
0=2d (0, — P'vy) .
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Input:  labeled datd (x;, v:)1},
unlabeled datdx; }

Output:  predictorf : X — Y
1. Choosen binary auxiliary problemsgy,(x), £ =1...m

2. For{=1tom
Wy = argmin,, (Zj L(w - xj,pe(xj)) + )\kuz)

end
3. W=[Wq|...|Wp], W <0,setW,,=0.

4. [UDV]=8SVD(W), &=U},,

ox;

T
X
5. Returnf, a predictor trained o ({ ' ] ,yt)
¢ t=1

Figure 2.1: ASO algorithm as it is implemented in practice

Solving forv, we arrive at the solutiof, = ®u . Finally, we can substitute this back into

the original minimization problem, yielding

¢ = argmin 3 _ Aty — P'Piy[[* st PV = Ly
L]

LetW = [uy,...,u,] be the matrix whose columns are the weight vectorghe solution

has the form

DA = WW'P |

with A diagonal. Together with the orthogonality constraint, wiew that the columns of
® are eigenvectors of the covariance matfiX’’. Thus we can also solve the optimiza-

tion problem above with a singular value decomposition.
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2.1.4 The ASO algorithm in practice

One could run the alternating structural optimization ascdeed in the previous section
to find @, but in order to achieve the results that Ando and Zhang [Bbne we must
make several changes to the form of the algorithm. In thif@ecwe briefly describe

these changes. The final, simpler algorithm is shown in figute

One iteration of optimization

The first change from the ASO algorithm as described in se&@it.3 is that there is no
alternation. That is, we only need to run one iteration o€lestep of) the optimization. In
practice there are far fewer parameters from the weighboveet on the transformed fea-
ture space than from the weight vectergon the original space. Thus tle are unlikely
to change significantly in the later iterations. Since#helo not change significantly?
will not change significantly, either.

Running only one iteration allows us to simplify training taexiliary predictorsu.
Since we are only running one iteration, and since we imgab = 0"V, w, =0, v, =
0 v/, we know thatu, = w,. Thus we can simply set the weight vectors by minimizing

the empirical risk with a quadratic regularization.

Only positive entries in W

The second important change to ASO is that when construtiiagnatrix W whose
columns are the weight vectovs,, we set all the negative entriég; , = 0 and compute
the SVD of the resulting sparse matrix. This serves two psgpoFirst, it saves space and
time. For a feature space of size 1 million and 3,000 auxilmpblems,J¥ has 3 billion
entries. Since, as we will see in the next section, most ianyiproblems are of the form
“predict whether an adjacent word<4sv>", they have many more negative instances than
positive. Solving the sparse singular value decomposttian results from setting these
entries to zero provides a significant speedup. Secondlynfmy auxiliary problems

we really care about positive instances, but not negatiseantes. For example, when
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An example weight matrixiV/, IifediCtOFS

{=1,....m_
where columns are auxiliary pre- T
dictor weight vectors and rows are T [U D V'] = SVD(Wg,)
. k o7, =U/,., .
features. The grayed block isthe | .. g [1:h,]
T, L _

submatrix for feature typ@;.

Figure 2.2: An illustration of block SVD by type, from Ando@Zhang [3].

predicting whether a word occurs, a positive instance gissemuch more information.
Thus we can consider discarding the negative entries aardisg the “noisy” entries of

this matrix.

Dimensionality reduction by feature type

Ando and Zhang [3] also suggest an extension that compupasate singular value de-
compositions for blocks of weights corresponding to whaytball “feature type”. Sup-
pose that for a tagging problem, we have three types of festlgft words, middle words,
and right words. Ando and Zhang point out that these feafyestare not homogenous
and should not necessarily be represented with the samecpanj®. They suggest per-
forming an SVD just on the submatrix corresponding to a gpefaature type (figure
2.2). Then, during supervised training and testing, therioeg ®; are applied to the

appropriate types separately, and the features are coatatkeinto a single vector.

Training a supervised model usingd

The final step of the algorithm (step 5 in figure 2.1) is to ti@imear predictor on labeled
data. Notice that instead of completely replacing the hypsis space, we augment the
original feature vectox with ®x. In practice Ando and Zhang [3] suggest to train a single
linear predictor by minimizing the combined loss

argmin (Z L(w'x; + V' ®x;,y;) + )\||w||2> : (2.1)
J

w,v
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We regularize the weight vecter which multiplies the original feature vector, but not the
weight vectorv which multiplies the low-dimensional transformed featueetor. This
assymetric regularization encourages the model to usewidimensional representation
rather than the original high-dimensional representation it allows the original feature

representation if necessary.

Applications of ASO

A complete discussion of the tasks to which ASO has beenepdibeyond the scope of
this thesis, but in addition to Ando and Zhang [3], we refex thader to Ando [4] for a
discussion of its application to word sense disambiguathmdo et al. [5] applied ASO
for information retrieval, and more recently Liu and Ng [4fplied ASO to the task of

semantic role labeling.

2.2 The SCL algorithm

Domain adaptation methods encounter different problears the semi-supervised learn-
ing setting which motivates structural learning. When ait@pfrom one domain to an-
other, we may have a large number of source domain trainstgrices, but because the
target distribution is different from the source, we staind estimate good statistics for
it. Structural correspondence learning (SCL) operatesloglda source training data and
unlabeled source and target training data. The goal of SCh @esign a small number
of features which are useful predictorshoththe source and the target domains. The
most important part of SCL is the selection of pivot featuRigot features correspond to
the auxiliary problems of structural learning, and theyte the mechanism for relating
the two domains. Choosing good pivot features is thus esddatigood performance.
Section 2.2.1 gives examples of pivot features and dissuss® to select them. As with
ASO, the final step of SCL is a singular value decomposition pifat predictor matrix.

Applying the final projection matrixp to an instancebx results in a low-dimensional,
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Input: labeled data from source domdjite;, v;)2;},

unlabeled data from both domaifs; }
Output:  predictorf : X —Y
1. Choosen pivot features (section 2.2.1).
2. Createmn binary prediction problemgy(x), { =1...m

3. Foré=1tom
Wy = argminw(zj L(w - x;j,pe(x;)) + >\HW||2>

end

4. W =[wi|...|Wy], [UDV']=SVD(W) &= U{:k,:

T
X
5. Returnf, a predictor trained o ([ t ] ,yt)
! t=1

Figure 2.3: SCL algorithm

dense feature representation.

The SCL algorithm is given in Figure 2.3. Step 1 of the algonitis the choice of
pivot features. After this, the remainder of the algoritleelosely based on on ASO, and
because the two have so much in common, we refer the readectiors 2.1 regarding

details that are not present in this section.

2.2.1 Pivot features

Pivot features in SCL play the same role as auxiliary problem&SO. They should

occur frequently in the unlabeled data of both domains,esime must estimate their co-
occurrence with non-pivot features accurately. At the same, they must also be suffi-
ciently predictive for the supervised task, since we wiiltha representation using them.

Pivots that don’t meet both of these criteria cannot helgasi a good representation for
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adaptation.

Pivot features for sentiment classification

Sentiment classification is the task of labeling each documéh whether or not it ex-
presses positive or negative sentiment. We use the stabdgrdf-words representation,
where the features are words and bigrams. Each word is vesidiyt its term frequency
and the values are normalized sum to one for each documert fBatures are features
which occur in more thak documents in both source and target domains. Then, for each
document, we create a pivot predictors for problems of thenftDoes t he pi vot
feature <w> occur in this docunent?”. From table 1.1(a), we can create
the pivot problemDoes the bigram <not buy> occur in this
docunent ?”, for example. When predicting a particular pivot we remokis feature

from the feature vector (or equivalently, always give it Ggin).

Pivot features for part of speech tagging

Part of speech tagging is a sequence labeling problem witty ineterogeneous features.
Given a sentence, the task of a part of speech tagger is tbdable word with its gram-
matical function. The best part of speech taggers encodetarss label as a chain-
structured graph [53, 20, 62]. In this formulation, the paErspeech label factors along
the cliques of the graph. We will design pivot features fatividual cliques and the input
features associated with them. Consider the edge endingtigttag for si gnal " in
the phrase withfior mal si gnal transducti on” (The correct label for this edge
is JJ- NN). We create pivots from left, middle, and right words thatwcmore thark
times in both corpora. Then we create pivot predictors fabfams of the form I's
the left/mddle/right word for this edge <w>?". From table 1.1(b),
we can create the pivot problerhs the right word for this edge
<requi red>?". When predicting a left word, we remove all features relatedhat

word from the input feature vector.
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Pivot predictors and correspondences

Each pivot predictor implicitly aligns features from segg@rdomains. For example, if non-
pivot features from both the source and target domains atetighly predictive for the
binary problemts the right word for this edge <required>?" then
after step 3 of SCL (figure 2.3), they will both have weightsha tinear classifier which
solves this problem. If two non-pivot features have highghi&s across many pivot pre-
diction problems, then we have significant reason to belieeg should correspond. In
step 4, when we perform the SVD on the weight matrix, thestifea will have a similar

representation in the low dimensional basis.

Choosing pivot features

We choose frequent features to function as pivots, and asalesee, this often results
in good representations for domain adaptation. But up to m@\have not chosen pivots
by explicitly taking into account the supervised problenidiie to perform. While we
do not have target labeled data, we can potentially make fuséange amount ofource
labeled data to select pivots which are more targeted atrttierlying supervised learning

problem. A simple way to do this is to score a featutdased on the conditional entropy

c(x',+) o c(xt, —1)
dW>+lgcw>>'

Herec(x) indicates the empirical count of featux& andc(x’, -) indicates the joint em-

of y givenx’:

HOYV ) = — (1o

pirical count of that feature with a particular label. SentB.1.3 explores results using

SCL with pivots selected using conditional entropy.

2.2.2 Feature normalization and scaling

Section 2.1.4 describes the version of ASO that Ando and @f@&rapply in practice. In
this section, we list and further address two practicalassdoeyond those mentioned in

Ando and Zhang [3]. When combining dense features (from tbgeption under®) and
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standard sparse features, we need to normalize and scalerike features for use with

standard optimizers.

Centering and normalization. When we receive a new instange we perform the
projection®x, yielding £ new real-valued features. For each of these features, wercen
it by subtracting out the mean on the training data. Then wenatize each feature to
have unit variance on the training data. This is especiatlyartant for supervised tasks
with multiple feature types. Since the projections areamtirmal, projections for feature
types such as bigrams tend to have much smaller values (arespondingly small vari-
ance), whereas projections for feature types such as psefasuffixes have much larger
values. These differences in feature values make it difficulise online and stochastic

optimization techniques effectively.

Scaling. The sparse features that we use for standard text procdssuggan intrinsic
scale. For bag-of-words representations of documentsepuesentation requires that the
feature values for each instance sum to 1. For the binargseptations we use in part
of speech tagging, the feature values for each instancesamumber much larger than
1. The real-valued features, however, all have unit vagafter normalization. Because
of this, we scale the values of the real-valued featuregusisingle scaling factar®x,

which we set on heldout data.

2.3 ASO and SCL as multiple-view learning algorithms

Structural learning and SCL model the inherent redundantxirfeatures. For sentiment
analysis, this redundancy comes in the form of multiple warded to express positive
or negative sentiment. For part of speech tagging, this samthe form of orthographic

versus contextual sources of information. Many times, thiography of a word provides
important information about its part of speech. Similathe context in which a word

appears also can provide information.

One way to analyze this feature redundancy is to split theufeaspace into multiple
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“views” [17]. Learning in the two views model proceeds byirtrag separate classifiers for
each view and requiring that they “agree” on the unlabelad &6, 1, 2, 29, 55]. In this
section, we show how to relate ASO and SCL to new theoreticat wo using canonical
correlation analysis for multiple view learning [36, 40].eV8how that a variant of the
ASO optimization problem is equivalent to the optimizatsmived by CCA. Kakade and
Foster [40] give simple conditions under which the CCA-ledrfeature space allows for
faster convergence to optimal linear regression parasittan the original feature space.
While these conditions are insufficient to give a complet@thef domain adaptation

with SCL, they provide intuitions about when SCL can succeed.

2.3.1 Canonical correlation analysis

Let X ~ D be a random variable which is divided into two views. We wiliter X (1)
andX( to denote the portions df that are specific to each view. Note thais a joint
distribution on both views. Canonical correlation analysids two sets of basis vectors
such that for all, the projections oX ™ andX® onto the firstk bases are maximally

correlated [36, 33]. Let’ be the joint covariance matrix fqix ("), X(®))
C = Exp [xx'] .

We may writeC' in the block form

Oll C112
021 022

C:

whereCy; = E,o)p [xVx1'] and likewise for the other blocks. Finally, we abuse
notation and writeC' for a covariance matrix approximated from a finite samplee Th

appropriate interpretation should be clear from context.

Leta; andb; be theith canonical basis vectors found by CCA for views one and two,
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respectivelya’ andb; are the solutions to the following optimization problem:

!/ /
argmax, p, a;C12b}

s.t. a;Cnai =1
b;CQQbi =1
b!Chsb; = 1

Vi<i ala; =0
Vj<i bib;=0
Vji<i ab; =0

A complete derivation of the solution to this optimizatisbeyond the scope of this
thesis, but the optimization may be solved efficiently asigereralue problem [33]. Let
Cy1 = Ry R, be the Cholesky factorization 6f;, whereR;; is lower triangular. Then

the columns of4 are the solutions to

R;11012C521021R;11/aj = anj . (22)

2.3.2 Multiple-view regression with CCA

Suppose we partition our feature space into two vigd8 andX®. Intuitively, CCA
captures the maximum “agreement” that may be captured bgiimansformations of the
two views. Kakade and Foster [40] show that for linear regjgsunder the squared loss,
CCA provides a new norm for regularization. This norm can imtead to significantly
decreased complexity when compared with the original nofrhis section is a brief
review of the Kakade and Foster result.

In the following derivation, leD be a joint distribution on pairgx, y). We wish to
find the solution to the minimization problem

w" = argmin E(x ,)p [(W'x — y)ﬂ :

For each view € {1,2}, we may also examine the minimum error regression using just

32



the features in that view:
, 2
w()* = argmin E(x(u) ) {(W(V) x) — y) ] .
w(”) ’
The assumption that Kakade and Foster make on the distibiitiis that the optimal

regression from each view has low regret with respect to fiienal joint regression:

Exw [(w(”)*lx(”) — y) 2} — Ex,y {(W*,X — y) 2} <e. (2.3)

This assumption does not involve a notion of independentveds the two views. In fact,
the resulting bound holds even for completely dependentszidn contrast to previous
theories where the views were assumed to satisfy some raftinodependence [17, 26, 1],
Kakade and Foster incorporate the amourtmfelationbetween the views as part of the
resulting bound.

With this assumption in hand, Kakade and Foster suggesotlosving procedure for
finding a good vectow: Compute the canonical basis vectarsandb;, the solutions
to CCA(x™M,x?). We give the regression procedure for view 1 (the procediarethe
two views are identical). Let; indicate the correlation of the canonical basis projedtion
a;xgl) andngZ@). If we denote byA the matrix whose columns are the canonical basis

vectors for view 1, then define
< = pA'x)
2
lo®len = 35 (i)

Now solve the following ridge regression problem:

, 2
W = argmin Ex<1>,y [(W(l) < _ y> + HW(UH?:CA] .

w(l)

The main theorem of the paper bounds the bias and varianeé of

Theorem 1 Suppose that the assumption from equation 2.3 holdsfajpd|x| < 1. Let

T be a training set consisting of pairs (x, y) drawn fromD. Then
2

/ 2 ' 2 . 0°
ET |:<W(1) X(l) _y> :| S E(x,y) |:(W*X—y> :| + 5e + Z;Lpz )
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Let us briefly examine this bound. The bias tefmdepends on the assumption from
equation 2.3. The variance term depends on the amount aflabon between the two
views. If the two views are highly correlated, then this tesrhigh, and we cannot expect
to learn from few examples. If, on the other hand, the viewscanditionally independent
giveny, then there will only be one non-zero correlation coeffitienrresponding to the

optimal regression.

2.3.3 Relating CCA and structural learning

Structural learning is not identical to CCA, but we may analgzeariant of structural
learning that solves an optimization problem identicalhattof CCA, subject to certain
constraints on the generating distribution. We briefly ioetthe algorithmic changes to

ASO (figure 2.1) here.

Multiple views, auxiliary problems, and pivot features

We first divide our feature space into multiple views. For saasks, this is natural. For
instance, when using SCL to learn representations for papeéch taggers, we already
partition pivots into “context” (left and right words) anddntent” (middle words). For
sentiment, we can randomly partition the words in the volzalpunto two views [3]. Now
we treat every feature as an auxiliary problem. For eacHiaokproblem generated from
a feature in view 1, we only use features from view 2 when tngja predictor for it. For
those in view 2, we only use features from view 1 when trairpredictors. For domain
adaptation, it will be useful divide our views into a view ssting of only pivot features

and one consisting of only non-pivot features.

Squared loss

The third step of SCL and structural learning is to train petats for each view. For this

discussion, we set the loss to be the squaredll¢ss: x;,y) = (W - x; — y)*.
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Within-view whitening

Before we train the predictors, we whiten each view indiviuay pre-multiplying by

Rfl

1478

whereR,, R, = C,,, as in section 2.3.1. This has creates identity within-view

covariance matrice§|; = Cy, = 1.

Block SVD by view

Now let us examine the matri¥’. The columns oV are linear predictors, the solution
to the optimization problems from step 3 in algorithm 2.1nc®i we don'’t use features
from the same view to make predictions within that view, weenthat!? has a block
off-diagonal form:
o wo
w® 0

W:

Following Ando and Zhang’s suggested extension (sectib@p.we focus here on sepa-

rate SVDs for each off-diagonal block/® for v € {1,2}.

Equivalence of ASO and CCA

We begin by partitioning the features into views and whitgniLet us first focus ofil’ (1),
Our modified ASO algorithm find8/ (") by solving the multiple least-squares optimiza-

tion problem

W = argmin ||[V' R XY — R} X®|2 .
\%
The solution to this problem is given by
W = (R XWX R R XX Ry,

By definition, the first term in the product simplifies to thentey matrix. We are left
with

W = R XWX® R
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The columns of®() are the left singular vectors d¥'). Equivalently, they are the

eigenvectors oft’ (W)’ which gives us the following form fop.:

Ry XWX Ry Ry XOXW RV g, = pg,
Ry C1aCsy' O Ry ¢ =p’P; .

This is exactly the CCA optimization from equation 2.2. Thus medifications allow us
to view the work of Kakade and Foster [40] as a theoreticattnent of ASO as well as
CCA. When we run SCL in practice, we don’t whiten the data or usarsguloss, how-
ever, and it is unclear whether these changes are esserttial performance of structural

learning and SCL.

2.3.4 Implications for domain adaptation

Structural correspondence learning works by trainingdingredictors for each pivot.
These predictors are linear mappings from non-pivot festio binary labels indicating
the presence or absence of each pivot. If we divide our feapace into two views, one
each for pivot and non-pivot features, the relationship to Giéws us to interpret SCL
as finding a low-dimensional basis under which linear ptedsctrained using non-pivot

features are highly correlated with linear predictorsnedi using pivot predictors.

For semisupervised learning, the theory of Kakade and Fp40¢ leads us directly
to a bound on the error of a predictor. Unfortunately the s@nwot true for domain
adaptation. The main assumption of Kakade and Foster isatijabd predictor can be
trained from each view in isolation. In the case of SCL, we nmdgrpret this as indicating
that a good predictor may be trained from the pivot featulesea Empirically, however,
we have found that this is not true. Non-pivot featusesnecessary for prediction in the
target domain (see chapter 3). An important goal for futuvekis to develop assumptions

under which SCL can be directly shown to perform well.
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2.4 Other methods for exploiting unlabeled data

SCL uses unlabeled target domain data to find a new featureseation. This feature
representation allows us to train an effective target ptediusing source training data.
This is by no means the only method for exploiting unlabelgi gthough. In this section,
we briefly review semi-supervised and unsupervised metimagst, with an emphasis on
applicability for domain adaptation. Our survey here isessarily brief, but see Zhu [70]

for a more complete survey of semi-supervised learning oaksth

2.4.1 Manifold regularization

Procedurally, the most similar methods to structural legyare those which learn a regu-
larizer from unlabeled data [68, 9, 71]. Like structuralrfeag, these methods regularize
parameters by enforcing smoothness in some underlyingpaubs The assumptions on
the structure of the subspace are quite different, thoudie sSimplest methods use the
singular value decomposition of the unlabeled data to ledvasis for a linear subspace
[68]. Rather than learning predictors, we simply choose dipesingular vectors of the

unlabeled data matrix to serve as our basis. While this maynbeffactive subspace

for semi-supervised learning, there is no clear connet@ween squared reconstruction

error and error of the predictive task.

One of the most natural ways to regularize predictors is torea smoothness between
nearby points. That is, for a real-valued predictor, we efinat the predictions be close
for points that are close. How can we decide which points lrge¢ though? One way
to proceed is the data manifold assumption [9, 72]: We assbatehe input instances
are sampled from a low dimensional manifold. The neighbodngraph on the unlabeled

data can provide us with an indication of the structure of thanifold.

Suppose we construct a graph whose nodes are instances asd adiges indicate

similarity between instances. Lét; be the square weight matrix for the edges in the
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[the use of signal transduction]
NN
dist=1.0 dist=1.0
X X
N dist=1.0 \®NN
[a man of signal [applications of signal
acconpl i shenent s] processi ng]

Figure 2.4: An example of how feature vector hamming distacan be misleading.
Nodes in the graph represent instances, and for each iestemavish to tag the word
“signal” with its part of speech. If we represent each instansing a three-word win-
dow, all instances have hamming distance 1 from one anoihistance in feature space

is insufficient for classification.

graph. One common choice for the similarity function is a &san kernel

Sij = exp(H 02XJH2> )

Given a weight matrix}y” and a hypothesis clags, Belkin et al. [9] suggest the following

regularized optimization problem

N+U

fr _argmm—ZL (Xi), ys) + N+U ZSZJ ;) — f(l‘j))Qv

fer

i,7=1

whereN is the number of labeled instances dnds the number of unlabeled instances.
Belkin and Niyogi and others have suggested variants of #gsilarization, including
learning linear combinations of the bottom eigenvectorthefLaplacian of the neighbor-
hood graph [9, 73].

For the manifold regularizer to be effective, the desigrhefrieighborhood graph must
reflect the structure of the input space. For continuousufeagpaces, a large unlabeled
neighborhood graph may yield a good approximation to the tnanifold. For discrete

feature spaces, the hamming distance is often insuffiogmety for large data sets. This
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is because changing just one feature can change the labeling@nce, and hamming
distance treats all features equally.

Figure 2.4 illustrates this. Although each instance hasrhigug distance 1 to each
other instancex, is labeled differently fromx; andxs;. Knowing that “transduction” and
“processing” are more similar than either one is to “accaosmphents” is necessary to give

correct distances here.

2.4.2 Bootstrapping

Another paradigm for exploiting unlabeled data is boofgtmag [67, 17, 49, 21, 1, 47].
Bootstrapping methods begin with an initial classifier. Tlael unlabeled instances with
this classifier. Then they choose some subset of the nelbidd instances to create a
new training set and retrain. There are many variants ofdtaqiping for semi-supervised
learning, and it is well beyond the scope of this thesis tdyaeaall of them in depth. Here
we briefly discuss their relation to SCL and application to donadaptation.

One of the most well-studied methods for bootstrapping idraming [17]. Co-
training was the first semi-supervised learning method tmédly articulate the notion
of two views. Blum and Mitchell [17] give an algorithm whiclatns classifiers for each
view separately. Then the classifier for one view is used lvellanstances to train the
other. Blum and Mitchell analyze their co-training algonithn the PAC setting. They
show that if each view is sufficient for classification and ¥iexws are conditionally inde-
pendent given the label, then given initial weak predictorsach view, co-training finds
an accurate model using only unlabeled data. Co-trainingnaected to structural learn-
ing via CCA. When analyzing CCA for multiple view regression, Kaé&and Foster [40]
also assume that each view is sufficient (has low regret)dgression. But the amount
of conditional independence (correlation) appears asmaitetheir bound, rather than an
assumption.

Jiang and Zhai [39] studied a bootstrapping method for donagiaptation of text

processing models. They trained a model in the source donTdien they labeled the
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target domain instances about which the model was most emféhd retrained on them.
They report good positive empirical results using this-g@ining approach on several
text problems, but their work contains no theoretical asialpr discussion of when self-

training could be effective for domain adaptation.

2.4.3 Covariate shift and instance weighting

One area problem that is very closely-related to domaintatiap is the problem of co-
variate shift (also called sample selection bias), whick b@en studied in the machine
learning and statistics communities [59, 37]. Here we asstinva conditional distributions
Prp, [y|x] andPrp, [y|x] are identical, but the instance marginal distributidhg, [x]|
andPrp,. [x] are different.

Several researchers have studied algorithms for regressibis setting [59, 37]. Like
our domain adaptation setting, they assumed that they Habeled data from both source
and target domains. Unlike our application to text, thoulgay focused primarily on prob-
lems with low-dimensional, dense continuous features.yTist estimate the posterior
probability that a particular source instance has been mfasm the target distribution
(for instance, under a kernel density estimate of the tatgptibution). Then they min-
imize an “instance re-weighted” source error objectiveatflik, each instance is given a
weighta; which depends on its weight under the estimated target.|&itoi our previous
minimization problem, we now minimize

N

S L (F(w x5, 1)) + IWI[2

=1
Standard kernel density estimators like the Gaussian kareeeffective in low dimen-
sional, continuous spaces, but as we discuss in sectioh, 2¥tance weighting is less
effective for high-dimensional, sparse feature spacels aat¢hose for text. From a theo-
retical standpoint, the covariate shift assumption is teakito allow us to prove a concise,
computable bound for target error under arbitrary sourcktarget marginal distributions

on unlabeled instances (see chapter 4).
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2.5 Summary

This chapter described the structural correspondenceitepf(SCL) algorithm, a method
for using unlabeled source and target data to learn a sheataré representation that is
simultaneously effective for both domains. SCL uses therieeie of structural learning
[3] to find a low-dimensional linear subspace of the orgiealtéire space. If this subspace
is effective, a good source predictor which uses it is autmaldy a good predictor for
the target domainAn essential component to SCL is the notion of a pivot featineot
features are features that are important for classificateord are shared between both
source and target domain&CL can be seen as modeling a low-dimensional subspace of
the non-pivot features that correlates as much as possithidtve pivot features.

We related SCL and structural learning to canonical colimanalysis (CCA) [36],
a statistical method for discovering correlating basidmecfor two multivariate random
variables. Recent work by Kakade and Foster [40] has showrntiter relatively weak
assumptions, CCA on unlabeled data can discover an effeotieimensional basis for
prediction. Using this basis to find a predictor on labelethdzmn lead to much faster
convergenceWe believe that in the future, this relationship will be helph formulating

a theoretical analysis of when SCL can help for domain adapati
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Chapter 3

Experiments with SCL

This chapter examines in detail the application of SCL to tewt processing tasks: senti-
ment analysis of product reviews and part of speech tagyWegtreat sentiment analysis
as a binary classification problem (either positive or negatentiment). Part of speech
tagging is a structured prediction problem, where the tagk ilabel a sentence with a
sequence of part of speech labels. For both of these proplarear predictors achieve

state-of-the-art results, making them ideal for an emalticvestigation of SCL.

We examine the two tasks separately, but performing pheatjgeriments. First, we
attempt to illustrate intuitively why SCL should help us inndain adaptation. We do
this by examining how domain-specific features are reptesgen the low-dimensional
subspace it discovers. The latter part of each section giweeerical error rates showing
that SCL does indeed improve linear models for these problgvedirst show that when
we have no labeled target data, SCL significantly reduces, emmetimes by a relative
amount of more than twenty percent. Second, we address sieevdzere we do have a
small amount of labeled target domain data. Under thesarostances, several authors
have proposed techniques for combining source and targgeeffactively. We show that
combining SCL with these methods yields still greater impraents, reducing error due
to adaptation by as much as forty percent. The results irctrapter are drawn primarily
from Blitzer et al. [16] and Blitzer et al. [15].
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3.1 Adapting a sentiment classification system

A sentiment classification system receives as input a doctiared outputs a label in-
dicating the sentiment (positive or negative) of the docatm&his problem has received
considerable attention recently [51, 63, 32]. While movieaws have been the most stud-
ied domain, sentiment analysis has been extended to a nwwhbhew domains, ranging
from stock message boards to congressional floor debate6IPSResearch results have
been deployed industrially in systems that gauge marketicgaand summarize opinion
from web pages, discussion boards, and blogs.

With such widely-varying domains, researchers and engsnefo build sentiment
classification systems need to collect and curate data ébrmaw domain they encounter.
Even in the case of market analysis, if automatic sentimiassdication were to be used
across a wide range of domains, the effort to annotate carporeach domain may be-
come prohibitive, especially since product features changr time. We envision a sce-
nario in which developers annotate corpora for a small nummbdomains, train classifiers
on those corpora, and then apply them to other similar carpidne case for domain adap-
tation is immediately clear, since documents from diffé@mmains can vary widely in
the ways they express sentiment.

We constructed a dataset for sentiment domain adaptatigelbgting Amazon prod-
uct reviews for four different product types: books, DVDotronics and kitchen appli-
ances. Each review consists of a rating (0-5 stars), a revieame and location, a product
name, a review title and date, and the review text. Reviews rating> 3 were labeled
positive, those with rating: 3 were labeled negative, and the rest discarded because their
polarity was ambiguous. After this conversion, we had 100€itve and 1000 negative
examples for each domain, the same balanced compositidregsotarity dataset [51].
In addition to the labeled data, we included between 368508)\vand 5945 (kitchen)
instances of unlabeled data. The size of the unlabeled dagdimited primarily by the
number of reviews we could crawl and download from the Amazebsite. Since we

were able to obtain labels for all of the reviews, we also esdthat they were balanced
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between positive and negative examples, as well.

3.1.1 Problem setup and representation

We created feature vectors from each review by using theramg and bigrams from
the review title and text. Each unigram and bigram is assediwith one dimension of
feature space, and the value for each dimension the couthigftieature in that document.
If we let ¢(i, 7) be the count of thgth feature in théth document in the corpus, then the

dimensions of the feature vectey have the form

o cig)
Z ZZ:1 c(i, k)
This roughly follows the setup of Pang et al. [51] for sentnnelassification, although
they also included trigrams in their features. In prelinmjnexperiments, adding trigram
features did not improve performance.

We split each labeled dataset into a training set of 160@mts and a test set of 400
instances. All of our experiments use a classifier trainetherraining set of one domain
and tested on the test set of a possibly different domain. tétaé number of features
varies among pairs of domains, but for all pairs, we usedagpmately 200,000 features
(the dimensionality ok was 200,000). Our baseline is a linear classifier trainetowit
adaptation, while the gold standard is an in-domain cla&sdifained on the same domain
as it is tested. When we train supervised predictors, we nmeirthe Huber loss with
stochastic gradient descent, as described in chapter Ihe&potarity dataset, this model

matches the results reported by Pang et al. [51].

Pivot features and scaling

We chose pivot features for adapting sentiment classifigirsguone of two procedures.
The first procedure is exactly the method described for semti in section 2.2.1: Choose

as pivots words and bigrams that occur more thdimes in both the source and target
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Selected by frequency Selected by conditional
only, not conditional entropy entropy only, not frequency
book one <num> so all | anust awonderful |oved.t
very about they like weak don’t _waste awf ul
good when hi ghl y_recomended and_easy

Table 3.1: Top pivots selected by frequency, but not comaliti entropy (left) and vice-

versa (right)

domains. We set to be the largest number such that we have at least 1000 pives

refer to this procedure as “selection by frequency”.

Section 2.2.1 describes another criterion for choosingtpivthe conditional entropy
of the labely given the presence that particular pivot feature. For aiqudar pair of
domains, we use this by settikdo be the largest number such that we have at least 10,000
potential pivots. Then we sort these potential pivots bydaznal entropy and choose the
top 1000. We refer to this procedure as “selection by comwiti entropy”. Table 3.1
shows the set-symmetric differences between the two mstfadivot selection when

adapting a classifier from books to kitchen appliances.

We seth, the number of singular vectors computed in the final SVD aehsoughout
these experiments. We also followed section 2.2.2 in noemngl the parameters. For
scaling, we first scaled the real-valued featubasso that the average norm of the real-

valued feature vector for each training instance was one

1 N
=D |Px|=1.
Nt:l

Then we setv = 0.1 for all of the experiments (see section 2.2.2) , based orohéldiata

from the books and kitchen appliances data sets.
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Figure 3.1: A discriminating projection of word featurestminhe real line, for books
and kitchen appliances. Words on the left (negative valbetipve similarly each other
for classification, but differently from words on the rightoGitive valued). Above the
horizontal axis are words that only occur in the kitchen gpges domain. Below the

horizontal axis are words that only occur in the books domain

electronics only _
a_l enon tech_support comnpact ny_i pod
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dvd only

Figure 3.2: A discriminating projection of word featuresmthe real line, for the DVDs
and electronics domains. Words on the left (negative valbetave similarly each other
for classification, but differently from words on the rigigtogitive valued). Above the
horizontal axis are words that only occur in the books domBglow the horizontal axis

are words that only occur in the DVDs domain.

3.1.2 The structure of®

In chapters 1 and 2, we motivated SCL by claiming that it wowldogle correspondences

such as those in figure 1.5. Here we illustrate the correspores that SCL actually does
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learn by examining the rows of the matdx Recall that the inner product of each row with
an instance vectat yields a single new real-valued featubg ;) x. From equation 2.1, we
see that this new feature is associated with a weightf we expand the inner product,

for a particular instance, the score contributed by the new real-valued feature is

vi®px =v; Z D;ix; .
J
In particular, we note that if different features, andx;, have similar entries in th&h
row of ®, then they effectively share a single parameter

Figures 3.1 and 3.2 illustrate these projections. Eachgblotvs a single row of the
matrix ¢, along with the most positively-valued and most negatixeliued features for
that row. Let us briefly examine the projections from figuré. 3The words above the
horizontal axis never appear in our books training datawaustill may assign them some
weight (viav;), as long as we observe the ungiue book-specific words @éeplietiow the
horizontal axis. For instance, sinpe edi ct abl e andl eaki ng have similar values
under®. ;, when we observeeaki ng at test time, it will contribute to the decision rule
as though we had observpdedi ct abl e. Figure 3.2 illustrates a similar discriminating
projection for DVDs and electronics.

These illustrations depict how SCL can intuitively perforrallvBut we note here that
not all projections are discriminating by themselves. Thalfdecision rule is the linear
combination of the feature®x. In practice, many projections are not visibly discrim-
inating, and may not be related to the supervised task atdlih labeled source data,
however, we can learn to ignore those projections. Indeednay be able to find a good

linear predictor even when there is no single good discraimg projection.

3.1.3 Empirical results: only unlabeled target data

In this section, we investigate empirically the most comma@ancountered domain adap-

tation setting: We have a labeled training sample from acgodomain and large unlabeled
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Figure 3.3: Sentiment classification accuracies for dorad@ptation between all pairs
using a supervised baseline, SCL and SCL-CE. Horizontal blaek are the accuracies

of in-domain classifiers.

samples from both source and target domains. We first chaesis pccording the proce-
dures outlined in section 3.1.1. Then we find the matrixsing the unlabeled data from
both domains and train a supervised model using the label@te data, combining the

SCL and original sparse features.

Figure 3.3 gives accuracies for domain adaptation acrégsaamb of our sentiment
domains. The target domains are ordered clockwise fromdpdefft: books, DVDs,
kitchen appliances, and electronics. Each group of three flepresents a single source
domain (denoted by the first letter). The three bars theraselwe our supervised baseline
(black), SCL with frequency-based pivots (light gray), ar@LSwith pointwise condi-
tional entropy-based pivots (dark gray). The thick hortabbars are the accuracies of the

in-domain classifiers for these domains. These classifiers@ned on the 1600-instance
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training set and tested on the 400-instance test set of the damain and represent a gold
standard for the target domain.

To help interpret the results, the top left set of bars (framks to DVDs) shows that
the baseline achieves 72.8% accuracy adapting from DVD®o&d Choosing pivots
based on their conditional entropy with the labels and mgr$CL achieves a 79.7%
accuracy and the in-domain gold standard is 80.4%. We sayhtbadaptation losgor
the baseline model is 7.6% and the adaptation loss for the @Emodel is 0.7%. The
relative reduction in error due to adaptatiasf SCL-CE for this test is 90.8%.

We can observe from these results that there is a rough grgopour domains. Books
and DVDs are similar, as are kitchen appliances and elécgphut the two groups are
different from one another. Adapting classifiers from bowkBVDs, for instance, is eas-
ier than adapting them from books to kitchen appliances. @¥e that when transferring
from kitchen to electronics, SCL-CE actually outperformsitiedomain classifier. This
is possible since the unlabeled data may contain informakiat the in-domain classifier

does not have access to.

3.1.4 Empirical results: some labeled target data

domain | features with similar values under®;; ,

books| bookwas, readinghis, thisstory, characters

kitchen appliances was defective, wasroken, noisy, thigpurchase

Table 3.2: An example of a mis-alignment for the books anchiéh appliances domains.
The kitchen appliances-specific features are associatidnggative sentiment, but the

books-specific features are not associated with eithetip®sir negative sentiment.

The SCL-CE model improves over the baseline in 10 out of 12 cdmedhere are
two pairs of domains in which SCL-CE causes error to increases i§ because while

SCL generally creates good representations for adaptatiomy also misalign features.
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Figure 3.4: Sentiment classification accuracies for donaaiaptation with 50 labeled

target domain instances.

We designed the pivots to reflect intuitions about class negsftip, but we did not en-
force class membership in our final SCL representation. TaRldlustrates one example
of mis-aligned features, for the books and kitchen appéamtomain. For this pair of
domains, the relative error due to adaptation increaseg %y hder the SCL-CE model.
Despite the increase in error, though, we saw in sectior? 3hhat there are correct
discriminating projections for domain paris such as boaks kitchen appliances. Here
we propose to exploit small amounts of labeled target dordata to slightly adjust the
parameters for the SCL features. The intuition is that even with very draatounts of
target data, the number of SCL parameters is small enouglato &n effective correc-
tion from source to target. Using the notation of Ando andi¢hi8], we can write the

supervised training objective of SCL on the source domain as
min 3 L (wx; + v7 @ xi, i) + AWl + gl [v][?

wherey is the label. The weight vectev € R¢ weighs the original features, whilec R*
weighs the projected features. Ando and Zhang [3] sugyestl0—*, 1 = 0, which we
have used in our results so far.

Suppose now that we have trained source model weight vestoedv,. A small

amount of target domain data is probably insufficient to ificgntly changew, but we
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can correctv, which is much smaller. We augment each labeled targetriosta; with

the label assigned by the source domain classifier [30, T68nTve solve

Mminw .y Y L (W'x; + v'0x;,y;) + Awl|?

+ul[v = vl

Since we don’t want to deviate significantly from the souraegmeters, we set =y =
101,

Figure 3.4 shows the corrected SCL-CE model using 50 targetiolabeled in-
stances. We chose this number since we believe it to be anaalsoamount for a single
engineer to label with minimal effort. For each target damae show adaptation from
only the two domains on which SCL-CE performed the worst netatid the supervised
baseline. For example, the book domain shows only reswits &lectronics and kitchen,
but not DVDs. As a baseline, we used the label of the sourceadoafassifier as a feature
in the target, but did not use any SCL features. We note thatdkeline is very close to
just using the source domain classifier, because with onkgfg®t domain instances we
do not have enough data to relearn all of the parametevs. il\s we can see, though,
relearning the 50 parametersyns quite helpful. The corrected modalwaysimproves
over the baseline for every possible transfer, includiragénot shown in the figure.

The idea of using the regularizer of a linear model to enageithe target parameters
to be close to the source parameters has been used previmwakiynain adaptation. In
particular, Chelba and Acero [18] showed how this technicure lme effective for capi-
talization adaptation. The major difference between oyragch and theirs is that we
penalize deviation from the source parameters for the ieighof projected features,
while they work with the weights of the original features. ¥e may expect, for our
small amount of labeled target data and large number of fesitattempting to penalize
w usingw, performed no better than our baseline. Because we only ndedrnoto ig-
nore projections that misalign features, we can make muttbrgse of our labeled data
by adapting only 50 parameters, rather than 200,000.

Table 3.3 summarizes the results of sections 3.1.3 and Bfirn4ctural correspondence
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dom\ model| base base scl scl-mi scl-mi large-
+targ +targ P-only
books| 8.9 90 74 58 44 1.8
dvd| 89 89 78 6.1 53 3.8
electronics 83 85 59 55 48 1.3
kitchen| 10.2 99 70 56 51 3.9
average 9.1 91 71 58 49 2.7

Table 3.3: Summary of sentiment classification results hEaw shows the average loss

due to adaptation for each method for a single target donaaeraged over all source

domains. The bottom row shows the loss averaged over akks@amains runs.

learning reduces the error due to transfer by 21%. Choosurggiby mutual information

allows us to further reduce the error to 36%. Finally, by addb0 instances of target

domain data and using this to correct the misaligned priojest we achieve an average

relative reduction in error of 46%.

The final column of table 3.3 shows a new set of results obddiyeraining on a much

larger dataset. In this case, we doubled the amount of ueldldata in each domain and

trained on only the low-dimensional representation of taead While these numbers

represent a significant improvement even over the previ@lsr8sults, we note that they

are only directly comparable to the original supervisecebas! They demonstrate that

in many cases, the SCL representation alone can give a samifroprovement over the

baseline, even without using the original features.
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he cl ash is si gn di vi si veness

Figure 3.5: A chain-structured graphical representatf@sentence and its part of speech
tag sequence. We factor the label sequence (angl ¥leetor) along the edges of the graph

to allow for efficient inference [42, 19].

3.2 Adapting a part of speech tagger

A part of speech tagger takes as input a sentence and outgetguance of labels in-
dicating the part of speech tags for each word (figure 3.5)t ¢faspeech tagging is a
canonical problem in text processing, and it serves as astieptin many pipelined sys-
tems, including higher-level syntactic processing [2], #iformation extraction [56, 52],
and machine translation [66]. Because of their fundamental part of speech tagging
systems must be deployed in a variety of domains. In this@seolve show how to use
SCL to adapt a tagger from a standard resource, the Pennrile®¥al Street Journal
(WSJ) corpus [46] to a new corpus of MEDLINE abstracts [52].

The Penn BiolE project [52] focuses on building informatiotiraction and natural
language processing systems for biomedical text. We addaancorpus from this project
consisting of 200,000 sentences that were chosen by segritiEDLINE for abstracts
pertaining to cancer, in particular genomic variations emdations. This corpus contains
as a subset a smaller corpus consisting of 1061 sentendelsatiebeen annotated by
linguists with part of speech tags. The Penn treebank carpuosists of forty thousand
annotated sentences. In this section our goal is to adaggertérained on the treebank

corpus to perform well on the MEDLINE corpus.

1In addition to the extra unlabeled data, they also use a nement version of the SGD optimization
algorithm.

53



word prefix Suffix
left The The, Th The, he
middle cl ash cl as, cl a,cl | ash,ash, sh
right IS S IS
left-mid | The_cl ash The cl as, The cl a, The_ |l ash, The_ash
The_cl ,Th_cl ,... The_sh, he_sh,...
left-right The.s The.is,This, The.s,hels
mid-right | clash.is |clas.is,clais,cl.is|lashis,ashis,shis

Table 3.4: The types of features we use for part of speechngggach cell represents
one type, and the entries of the cells are example instamtgafor the edge of the graph

in figure 3.5 ending witlsi gn. In this case, the middle word & gn.

3.2.1 Problem setup and representation

The part of speech tagset we use consists of the standardrieebank tagset, augmented
with two new tags: HYPH (for hyphens) and AFX (for common posidifiers of biomed-
ical entities such as genes). These tags were introducetd dine importance of hyphen-
ated entities in biomedical text, and are used for 1.8% ofatbedls in the test set. Any
tagger trained only on WSJ text will automatically predicowg tags for those words.

We treat part of speech tagging as a sequence labeling prolbligure 3.5 shows an
example sentence, together with a graph depicting how werfte label. When the label
(and the¢ vector) factors along the edges of the graph, we may perfdiinieat infer-
ence using dynamic programming [42, 19]. This allows us toate the best sequence
for a particular sentence given a model. With the ability éofprm efficient inference,
we can use any number of models to learn an appropriate Imedel. We choose the
discriminative online large-margin learning algorithmmRA [22].

Now that we have chosen an appropriate factorization, we sheose features for
a particular edge in the graph. Table 3.4 depicts the fedyges we use, together with

examples of the features that would be instantiated for tdge ending insi gn. We
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generate th& vector by concatenating each of these features with thefsgbssible
labels. We also add one entry to i@ector for the identity of the tags at each end of the
edge. In the example from table 3.4, this entry wouldde NN. Each of these features,
and each of the entries in tlgevector is represented as a single binary number: 1 ifitis
present in an instance and O if it is not present. In totalpge200,000 sentences from

both domains, we created 5 million features (the dimenéityraf x was 5 million).

Pivot features and model choices

We chose pivot features using the method from section 212 4dll the experiments of this
section, we use left, middle, and right words that occur ntizaa 50 times in both corpora.
State of the art part of speech taggers require feature tyffstifferent granularities. The
total number of types is equal to 18, the number of entrieabiet3.4. We perform a per-
type dimensionality reduction, and for each type sub-matve seth = 25. This gives us

a total of 450 dense features. Just as for sentiment clagsficwe normalize and scale
the real-valued features. We first scaled the real-valusidfes so that the average 1-norm

of the sparse and dense features is the same for each traistagce

1 & 1 o
NZ|(I)X15| = NZ|X1§| .
t=1 t=1

Then we setv = 1 for all of the experiments, based on heldout Wall StreetdaiLdata.

3.2.2 The structure of®

As in section 3.1.2, in this section we explore the structfrne SCL representation by
representing pictorially the entries of the mat#ix Unlike for sentiment classification, in
these experiments we have divided up the mabrirto several separate matrices depend-
ing on the feature type. Figure 3.6 shows entsigsin a single ron®; ,; of the projection
matrix for them ddl e wor d type. As before, we chose a discriminating projection. Part

of speech tagging is a multiclass problem so a single diroansill not allow us to make
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MEDLINE Only

receptors assays transi ent

neur onal
| esi ons netastatic
nut at i on / \ / / functi onal
________ IJ______ - ___‘I_____l_____ )'_ - ____I___J'___
transaction officials S pretty
political

conpany investors WSJ Only short-term your

Figure 3.6: An example projection of word features oRtoWords on the left (negative
valued) behave similarly to each other for classificatian differently from words on the
right (positive valued). The projection distinguishes nefrom adjectives and determin-

ers in both domains.

all possible discriminations. The row we chose distingesshetween nouns (negative
under®; ;) and adjectives (positive undéy; ).

Again, we emphasize that when training a tagger in the WadlestJournal, we can
implicitly assign weight to the MEDLINE-only features alethe horizontal axis via the
projection®; ;. Since the word ecept or s has a similar value unddr;; ., to the WSJ-
specific wordsonpany andt r ansact i on, we can incorporate it into a decision rule
at test time in MEDLINE. Finally, we wish to emphasize onceaiagthat while these
projections can give us clues as to how SCL can improve pdacicuracy, the actual
decision rule is a linear combination of 450 real-valuedusss. Even without a single

good discriminating projection, we may still be able to fingad linear model.

3.2.3 Empirical results: only unlabeled target data

For part of speech tagging, we only have one pair of domaireebler, we only have a
large amount of labeled data for a single domain (the Waélétdournal). Thus for this
problem, we cannot investigate the performance of SCL as@rysng pairs of domains.

Instead we investigate learning curves for SCL with incregsimounts of source data.

The graph in figure 3.7(a) shows three curves. The solid cisneesupervised MIRA
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(b) Accuracy on test set
Words
(@) Model | All Unknown
Results for 561 MEDLINE Test Sentences

\ — \ \ MXPOST[53] | 87.2| 65.2
supervised 87.9| 68.4
semi-ASO| 88.4| 70.9

SCL | 88.9| 72.0

90

[o0]
[
T

Accuracy

—— supervised (c) Statistical Significance
-©- semi-ASO

% SCL ] (McNemar's) for all words

0]
o
— T

Null Hypothesis | p-value

75 L L L L L
100 500 1k 5k 40k
Number of WSJ Training Sentences

semi-ASO vs. supef 0.0015

SCL vs. super| 2.1 x 10712

SCL vs. semi-ASO 0.0003

Figure 3.7: Part of speech tagging results with unlabelegetdraining data

baseline which does not use any unlabeled data. The dashezlisla semi-supervised
baseline using ASO. Here we treated the target domain abelathand learned an ASO
representation from 200,000 MEDLINE sentences, but we'dadtempt to choose com-
mon pivots or induce correspondences. Finally, the dotteekds the SCL model. For the
points on this curve, we learned an SCL representation frods0D0 Wall Street Journal

and MEDLINE sentences, following the procedures from sec8.2.1.

The horizontal axis of figure 3.7(a) shows increasing an®ahsource training data.
With one hundred sentences of training data, structurakspondence learning gives a
19.1% relative reduction in error over the supervised li@seand it consistently outper-
forms both baseline models. Figure 3.7(b) gives resultsi®00 sentences, and Fig-
ure 3.7(c) shows corresponding significance tests, with 0.05 being significant. We

use a McNemar paired test for labeling disagreements [3%gnEvhen we use all the
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WSJ training data available, the SCL model significantly impsoaccuracy over both the
supervised and ASO baselines.

SCL is designed to improve the accuracies for unknown wordsdsvthat have never
before been seen in the WSJ). For our final set of experimeetsmwestigated unknown
word accuracy more directly. The second column of Figur€b3.gives unknown word
accuracies on the biomedical data. Of thirteen thousartdrtsances, approximately
three thousand were unknown. For unknown words, SCL givesafives reduction in
error of 19.5% over MXPOST [53], a common out-of-the-boxddme, even with 40,000

sentences of source domain training data.

Improving a parser in the target domain

At the beginning of section 3.2, we motivated our invest@abf part of speech tagging
by emphasizing its importance as a first step in many pipedltext processing systems.
Here we show that improving a part of speech tagger in a newadogan improve a
dependency parser in the new domain as well. We use the parsenbed by McDonald
et al. [48]. That parser assumes that a sentence has beeadEst before parsing, so it
is a straightforward match for our experiments here.

Figure 3.8 shows dependency pars-

Dependency Parsing for 561 Test Sentences . . .
‘ ‘ ‘ ‘ ‘ ing accuracy for increasing amounts of

Wall Street Journal data. At test time, we

tag the MEDLINE data with one of three

taggers. Then we use the output of this

tagger as input to the dependency parser.

Accuracy
~
o

—+ ised 1 . . L.
-o ;ucpfmse | The first tagger (thick black line) is a su-

~% gold

pervised baseline. The second (dashed
: A : : line) is trained using SCL. The third (dot-
100 500 1k 5k 40K

Number of WSJ Training Sentences ted line) is the gold standard, where in-

Figure 3.8:Dependency parsing results using ditead of using an automatic tagger we

ferent part of speech taggers £g



just use the correct tags from the annota-
tion. The SCL tags consistently improve
parsing performance over the tags output by the supenasggt, closing the gap between

the baseline and the gold standard by about 50%.

3.2.4 Empirical results: some labeled target data

(b) 500 target training sentences

Model | Testing Accuracy
(@) nosource 94.5
Besults for 5‘61 MEDLINE Test Sentence:? 1k-super| 94.5
% 1k-SCL | 95.0
L 3 _,qe—“ -
M- , 40k-super| 95.6
L+ -8 ’ e i
R B ; 40k-SCL | 96.1
3 LT T [ -%- 40k-SCL ]
g r R4 - -+- 40k_ b
< 90: o .- 1k_s?~jf’er ] (c) McNemar's Test
- 3 O lk-super | )
L nosource ] Null Hypothesis | p-value
86 1k-super vs. nosource0.732
50 100 200 500
Number of MEDLINE Training Sentences 1k-SCL vs. 1k-super 0.0003

40k-super vs. nosource2 x 1012

40k-SCL vs. 40k-super 6 x 1077

Figure 3.9: PoS tagging results with no target labeled itngidata

We now examine a setting in which we have a small amount ofiéabRIEDLINE
data. As with sentiment classification, the key idea is to theelabeled target data to
make adjustments to a model trained in the source domainikéJm sentiment clas-
sification, however, for part of speech tagging we explog gructured nature of the
problem. In particular, we note here that the output of thers® classifier gives in-

formation not only about the tag of the current word, but about the tag of nearby
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words. In order to use this information, we first train a tagge the Wall Street Jour-
nal. Then we create features from the output of the sourceehat use these features
for training and testing in the target [30]. We use as feattine currently predicted tag
and all tag bigrams in a 5-word window around the current wdfdr example, sup-
pose the source tagger labe¥st h normal signal transduction asIN JJ

JJ NN. One feature we would create for the window centeresli anal is the feature

sourceleft_m d_tag_bi gram=JJ_JJ.

Naturally we expect the accuracy of the source-trainedgagygthe target domain to
affect the quality of the features we create. In these erparis, we show how using fea-
tures from an SCL-based source tagger can significantly wepttee final target-trained
tagger. Figure 3.9(a) plots tagging accuracy for varyingants of MEDLINE training
data. The two horizontal lines are the fixed accuracies ofSitie WSJ-trained taggers
using one thousand and forty thousand sentences of tradaitag The five learning curves
are for taggers trained with varying amounts of target doniaining data. They use
features on the outputs of taggers from section 3.2.3. Téenkd indicates the kinds of
features used in the target domain (in addition to the stahfiamtures). For example,
“40k-SCL” means that the tagger uses features on the outpwis 8CL source tagger
trained on forty thousand sentences of WSJ data. “nosoundédtes a target tagger that
did not use any tagger trained on the source domain. With $6Qfce domain sentences
and 50 target domain sentences, using SCL tagger features @i20.4% relative reduc-
tion in error over using supervised tagger features and2¥@8%elative reduction in error

over using no source features.

Figure 3.9(b) is a table of accuracies for 500 target domaimihg sentences, and
Figure 3.9(c) gives corresponding significance scoresh W00 source domain sentences
and 500 target domain sentences, using supervised taggerds gives no improvement

over using no source features. Using SCL tagger featurédatis, however.
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3.3 Related work

In this chapter we showed how SCL can improve linear discrtime models, both when
we have no labeled target data at all, and when we have smalirasof labeled target
data. Related work that does not use any target labeled dataise, but we address
it, as well as other mdethods for semi-supervised learmrggction 2.4. Here we focus
on related work which uses labeled target data, related workentiment classification
and part of speech tagging in general, and finally the smadlusntnof work on adapting

sentiment classifiers and PoS taggers.

3.3.1 Using labeled target data for domain adaptation

Although it is preferable to avoid labeling data in the tadgmain altogether, labeled data
is still by far the most useful resource to have. Furthermehen we do have some labeled
data, we should be able to exploit it as best as possible.r@emtion in this chapter is not

to advocate one method for using labeled target data incpéati We already showed that
SCL is compatible with two common methods for incorporatialgeled target data, and

here we briefly examine the space of such methods.

We combine SCL with the method of Chelba and Acero [18] in sacBd.4. They
begin by training a linear model on the source domain. Thep tilse maximum a poste-
riori estimation of the weights of a maximum entropy targeindin classifier. The prior
is Gaussian with mean equal to the weights of the source dochassifier. Florian et al.
[30] describe the method we use in section 3.2.4. They traiodel on the target domain
using the output of the source model as a feature.

In addition to these methods, there have been several othestigations of domain
adaptation. Roark and Bacchiani [54] use a Dirichlet priortarhultinomial parameters
of a generative parsing model to combine a large amount wiitigadata from a source

corpus (WSJ), and small amount of training data from a targgius (Brown). Daume
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and Marcu [28] use an empirical Bayes model to estimate atlatgiable model group-
ing instances into domain-specific or common across bothagwn They also jointly
estimate the parameters of the common classification modete domain specific clas-
sification models. Daume [27] gives a simple feature dupboamethod that performs
surprisingly well when the target training data yields disigntly accurate model on its
own. Because SCL combines easily with linear classificatiothats, we emphasize that

it is compatible with any of these schemes for exploitingelad data.

3.3.2 Sentiment classification

Sentiment classification has advanced considerably sheavork of Pang et al. [51],
which we use as our baseline. Thomas et al. [61] use discstnseture present in con-
gressional records to perform more accurate sentimergititadion. Pang and Lee [50]
treat sentiment analysis as an ordinal ranking problem.uinwork we only show im-
provement for the basic model, but all of these new techsiggo make use of lexical
features. Thus we believe that our adaptation methods @@uddso applied to those more

refined models.

While work on domain adaptation for sentiment classifierpa&se, it is worth noting
that other researchers have investigated unsuperviseseamdupervised methods for do-
main adaptation. The work most similar in spirit to ours thiaTurney [63]. He used the
difference in mutual information with two human-selectedttires (the words “excellent”
and “poor”) to score features in a completely unsupervisatimar. Then he classified
documents according to various functions of these mutdainmation scores. We stress
that our method improves a supervised baseline. While we tlhawe a direct compar-
ison, we note that [63] performs worse on movie reviews thamie other datasets, the

same type of data as the polarity dataset.

We also note the work of Aue and Gammon [7], who performed abasraf empirical

tests on domain adaptation of sentiment classifiers. Madstasie tests were unsuccessful.
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Their most significant results were on combining a numbeoafee domains. They ob-
served that source domains closer to the target helped rmopreliminary experiments
we confirmed these results. Adding more labeled data alwelps hbut diversifying train-
ing data does not. For example, when classifying kitchetiapges, for any fixed amount
of labeled data, it is always better to draw from electro@issa source than use some

combination of all three other domains.

3.3.3 Part of speech tagging

While the literature on unsupervised part of speech taggirguite large, to the best of
our knowledge, we are the first to adapt part of speech taggeev domains. Lease and
Charniak [43] adapt a WSJ parser to biomedical text withouttaognedical treebanked
data. However, they assume other labeled resources inrget ttomain. In section 3.2.3
we give similar parsing results, but we adapt a source dotagiger to obtain the part of
speech resources rather than using gold tags. Finally, M&gZland Charniak [47] use
a self-training technique to adapt a natural language ptssenew domain. They don’t

apply their technique to biomedical text, but they do shayni$icant gains for the Brown

corpus. At the same time, for very different domains suchoas@rsational speech, their

self-training technique does not give a large improvemeat their baseline parser.

3.4 Summary

The chapter described experiments demonstrating the useuattural correspondence
learning for adapting sentiment classifiers and part ofdp&sggersFor both tasks, SCL
significantly improves a state-of-the-art discriminatimedel using on unlabeled dathn
the case of sentiment classfication, SCL gives a relativectexntuin error due to adaptation
of 36%. When combined with simple methods for using labeled datajaB,for using
labeled data SCL can give even greater improvemeéot. both tasks, we demonstrated

settings under which SCL can reduce error by more than 40%.
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Chapter 4

Learning bounds for domain adaptation

An important component to better understanding domaintatiap is a formal characteri-
zation of when adaptation techniques work, as well as hovesb éxploit the resources we
have. This chapter develops a theoretical framework foralormdaptation and comprises
the work of Ben-David et al. [10] and Blitzer et al. [14]. We fisdtow how to use this
framework to prove bounds on the target error for classifidrieh are trained in a source
domain. We then demonstrate how to use the bound to estimai@daptation error for
the sentiment classification task. This is the focus of eacti2 and comprises work from
Blitzer et al. [15].

Section 4.3 gives a bound on the true target error of a modeled to minimize a
convex combination of empirical source and target errorse Bound is relevant for sce-
narios where a limited amount of target data is availableh s those corresponding to
the experiments of sections 3.1.4 and 3.2.4). It describastaitive tradeoff between
the quantity of the source data and the accuracy of the tdagat Furthermore, under
relatively weak assumptions we can compute it from finiteelath and unlabeled sam-
ples of the source and target distributions. We use the ths&rdiment classification to
demonstrate that our bound makes correct predictions abodel error with respect to

the distance between source and target domains and the nofiiksning instances.

Finally, we extend our theory to the case in which we haveiplalsources of training
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data, each of which may be drawn according to a differentidigton and may contain

a different number of instances. Several authors have eralbyr studied a special case
of this in which eachnstanceis weighted separately in the loss function, and instance
weights are set to approximate the target domain distobJ87, 13, 24, 39]. We give a
uniform convergence bound for algorithms that minimize avex combination of mul-
tiple empirical source errors and we show that these alynstcan outperform standard

empirical error minimization.

4.1 Arigorous model of domain adaptation

We formalize domain adaptation for binary classificatiofadlews. A domainis a pair
consisting of a distributio on X and a labeling functiorf : X — [0, 1].1 Initially we
consider two domains, sourcedomain(Dg, fs) and atargetdomain(Dr, fr).

A hypothesidgs a functionh : X — {0,1}. The probability according the distribu-
tion Dg that a hypothesig disagrees with a labeling functiofi (which can also be a

hypothesis) is defined as

es(h, f) = Exups [ |h(x) = f)] ]

When we want to refer to therror of a hypothesis, we use the shorthandh) =
es(h, fs). We write the empirical error of a hypothesis on the souramalo asés(h).
We use the parallel notatian (h, f), ex(h), andér(h) for the target domain.

We measure the distance between two distributidradD’ using a hypothesis class-
specific distance measure. LEtbe a hypothesis class for instance spateand. 4y
be the set of subsets &f that are the support of some hypothesigdn We define the
distance between two distributions as:

dy(D,D') =2 sup |Prp[Zy] — Prp [Z4]] .
ZnhEAN

1This notion of domain is not the domain of a function. To avoahfusion, we will always mean a
specific distribution and function pair when we say domain.
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For our purposes, the distanég has an important advantage over other methods for com-
paring distributions such as; distance or the KL divergence: we can compditeusing
finite samples from the distributiori andD’ when’H has finite VC dimension [12]. Fur-
thermore, as the following theorem shows, we can computeéte-Bample approximation

to dy, by finding a classifieh € H that maximally discriminates between instances from
D andD'.

Theorem 2 Leté.(h,1),é.(h,0) indicate the empirical error with respect to a particular
distribution of hypothesis with respect to the constant functions 1 and 0. For fixed
sampledAs, Uy from the source and target domains, both of size the empiricaldy
distance is

dy(Us,Ur) =2 — 22%171{1 [és(h,1) + €ér(h,0)] .

The proof of this theorem is in appendix A.1. It relies on time-@o-one correspondence
between hypothesésc H and halfspace&; € Ay,.

We call the hypothesis that performs the best on the comlsioete and target distri-
bution the ideal hypothesis:

h* = argmineg(h) + er(h) .
heH

We denote the combined error of by A = eg(h*) + ex(h*) . The ideal hypothesis
explicitly embodies our notion of adaptability. When it p@rhs poorly, we cannot expect
to learn a good target classifier by minimizing source erf@n the other hand, for the
kinds of tasks mentioned in at the beginning of the chapterempect\ to be small. If
this is the case, we can reasonably approximate target @siog source error and the
distance betweeP®s andDy.

The key element of our analysis is the error of one hypothessisrespect to another.
We now define the symmetric difference space, which capexpkcitly the halfspaces
where two hypotheses disagree. We define the symmetriaetife hypothesis space
HAH as

HAH = {h(x)® N (x): h,h € H} ,
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where® is the XOR operator. Each hypothegsis HAH labels as positive all points
on which a given pair of hypothesesidisagree.

We illustrate the kind of result available in this settingiwihe following bound on
the target error in terms of the source error, the differdreteveen labeling functiongs
and fr, and the distance between the distributiGhsandD. This bound is essentially a
restatement of the main theorem of Ben-David et al. [10],exmiing a mistake in both the

statement and proof of their theorem.

Theorem 3 Let H be a hypothesis space of VC-dimensiband s, Ur be unlabeled
samples of sizex’ each, drawn fronDg and D, respectively. Led;ap be the empirical
distance ori/s, Uy, induced by the symmetric difference hypothesis spach.pidbabil-

ity at leastl — ¢ (over the choice of the samples), for everg H,

2dlog(2m’) + log(5)

— + A

1.
er(h) < eg(h) + §dHAH(US7uT) + 4\/

The corrected proof of this result can be found Appendix Al2e main step in the proof
is a variant of the triangle inequality in which the sideslu# triangle represent errors of
one decision rule with respect to another [10, 23]. The baandlative toA. When the
combined error of the ideal hypothesis is large, there isdassdier that performs well on
both the source and target domains, so we cannot hope to fioodatgrget hypothesis by
training only on the source domain. On the other hand, follsin@he most relevant case
for domain adaptation), theorem 3 shows that source eruatabeled{ A -distance

are important quantities for computing target error.

4.2 Measuring adaptability with the HAH distance

Even with only unlabeled data, théAH-distance gives us a clue about how much adap-
tation loss we can expect for a particular pair of domainsilllistrate how this can be
useful, we study a setting where an engineer knows roughlglbmmains of interest but

does not have any labeled data yet. In that case, she caneagledhtion “Which sources
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Figure 4.1: The proxy{A’H-distance between each domain pair plotted against the aver
age adaptation loss. Each pair of domains is labeled byfihditetters: EK indicates the

pair electronics and kitchen.

should | label to obtain the best performance over all my dog?d On our product do-
mains, for example, if we are interested in classifyingees of kitchen appliances, we
know from chapter 3 that it would be foolish to label reviewsooks or DVDs rather
than electronics. We show how to select source domains wsilygunlabeled data and
the SCL representation.

We would like to use thé{AH-distance directly, but finding a maximally discrim-
inating symmetric difference of linear classifiers is NPdiarinstead, we approximate
dxax by training a linear classifier to discriminate between the tlomains. We use a
standard hinge loss (normalized by dividing by the numbenstances) and apply the
quantityl — (hinge losg in place of the actualyas. Let((Us,Ur) be our approxima-
tion to dy A, cOomputed from source and target unlabeled data. For dentizat can be
perfectly separated with margig(is,Ur) = 1. For domains that are indistinguishable,

¢(Us,Ur)=0.

2Even finding a maximally discriminating linear separatd{R-hard[12]
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To decide which domains to label, for each pair of domains a@pute the SCL
representation. Then we create a data set where each iedncis labeled with the
identity of the domain from which it came and train a lineaasdifier. Figure 4.1 is a
correlation plot between the proy AH-distance and the adaptation error. The two are
positively correlated.

Suppose we wanted to label two domains out of the four in sweayaas to minimize
our error on all the domains. Using the prokg\H-distance as a criterion, we observe
that we would choose one domain from either books or DVDs nbtitboth, since then
we would not be able to adequately cover electronics or &icppliances. Similarly we

would also choose one domain from either electronics ohkicappliances, but not both.

4.3 Alearning bound combining source and target data

Theorem 3 shows how to relate source and target error. Amee@.1.4 and 3.2.4 show
though, we can often achieve significant improvement if vée &lave a small amount of
labeled data in the target domain. We now proceed to giveraifegbound for empirical
error minimization using combined source and target tngmiata. At train time a learner
receives a samplg€ = (Sr, Ss) of m instances, wher8 consists ofim instances drawn
independently fronD; andSs consists of 1 — 3)m instances drawn independently from
Ds. The goal of a learner is to find a hypothesis that minimizegetaerrorer(h). When

£ is small, as in domain adaptation, minimizing empiricag&rerror may not be the best
choice. We analyze learners that instead minimize a congexbmation of empirical

source and target error:

éa(h) = aép(h) + (1 — a)és(h)

We denote as,(h) the corresponding weighted combination of true source arget
errors, measured with respect®g andDr.
We bound the target error of a domain adaptation algoritrabrttinimizes:, (k). The

proof of the bound has two main components, which we staterasmhs below. First we
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bound the difference between the target eergih) and weighted errot, (k). Then we
bound the difference between the true and empirical weibéerse, (k) andé, (h). The

proofs of these lemmas, as well as the proof of Theorem 4nakppendix A.3.

Lemma 1 Leth be a hypothesis in clagg. Then
1
ealh) = ex(®)] < (1= ) (nean(Dss Pr) +3)

The lemma shows that asapproaches 1, we rely increasingly on the target data, and th
distance between domains matters less and less. The pexawssmilar technique to that

of Theorem 3.

Lemma 2 Let’H be a hypothesis space of VC-dimensionif a random labeled sample
of sizem is generated by drawingm points fromD, and (1 — )m points fromDg,
labeling them according tg's and f, respectively, then with probability at least— ¢

(over the choice of the samples), for everg ‘H

ea(h)] < a_z (1—a)’ \/dIOg(2m) — logd ‘

|€a(h) - ﬁ + 1 — ﬂ om

The proof is similar to standard uniform convergence pr{@s6], but it uses Hoeffding’s
inequality in a different way because the bound on the rarigheorandom variables
underlying the inequality varies with and3. The lemma shows that asmoves away
from 5 (where each instance is weighted equally), our finite sarapf@oximation to

e« (h) becomes less reliable.

Theorem 4 Let’H be a hypothesis space of VC-dimensiohetl/s andl{; be unlabeled
samples of size)’ each, drawn fronDgs and D respectively. Le$ be a labeled sample of
sizem generated by drawingm points fromD; and (1 — 5)m points fromDg, labeling
them according tofs and f, respectively. Ifi € H is the empirical minimizer of,.(h)

on .S andhj. = min,ey er(h) is the target error minimizer, then with probability at least

70



1 — 4 (over the choice of the samples),

; 2 (1—a)? [dlog(2m) —logd
er(h) < ex(hy) +2 %+<1_Og\/ oB(@m) - log3

1. 2d1og(2m’) + log(4
2(1 — Oé) (idHAH(Z/{SJ/{T) + 4\/ g( m)/ g<6> -+ )\) .

Whena = 0 (that is, we ignore target data), the bound is identical & ¢f Theorem 3,
but with an empirical estimate for the source error. Sirilathena = 1 (that is, we use
only target data), the bound is the standard learning bosimdjwnly target data. At the
optimal o (which minimizes the right hand side), the bound is alwayleast as tight as
either of these two settings. Finally note that by choosiffgreént values oty, the bound
allows us to effectively trade off the small amount of tardeta against the large amount

of less relevant source data.

4.4 Evaluating the bound from theorem 4

We evaluate our theory by comparing its predictions to eirgdiresults. While ideally
theorem 4 could be directly compared with test error, thisas practical becausg is
unknown,d A IS computationally intractable [10], and the VC dimensibis too large
to be a useful measure of complexity. Instead, we developnalsiapproximation of
theorem 4 that we can compute from unlabeled data. For maaptatibn tasks) is small
(there exists a classifier which is simultaneously good @@hl@omains), so we ignore it
here. We approximait# 5, using the technique of section 4.2. Finally we replace the VC
dimension sample complexity term with a tighter constanThe resulting approximation
to the bound of Theorem 4 is

(o) = \/ o5+ 52 ) + - e @1)

Our experimental results are for the task of sentiment ifieggon. We use the data

provided described in chapter 3 and augment it with fourtemtthl domains. This gives us
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Figure 4.2:Comparing the bound from theorem 4 with test error for sentiment clagiific&ach
column varies one component of the bound. For all plotsytagis shows the error and theaxis
showsa. Plots on the top row show the value given by the bound, and plots on therbaito
show the empirical test set error. Column (a) depicts different distaamnesg domains. Column
(b) depicts different numbers of target instances, and column (c@septs different numbers of

source instances.
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Figure 4.3: Anillustration of the phase transition betwpesferring either source or target
training data. The value af which minimizes the bound is indicated by the intensity,
where black means = 1. We fixC}, = 1600 and{(Us, Ur) = 0.715, asin figure 4.2. The
x-axis shows the number of source instances (log-scale).yJdés shows the number
of target instances. A phase transition occurs at 3,13@tangtances. With more target

instances than this, it is more effective to ignore even &nitea amount of source data.

a total of eight types of products: apparel, books, DVDs;tetmics, kitchen appliances,
music, video, and a catchall category “other”. As before,tdsk is binary classification:
given a review, predict whether it is positive (4 or 5 out oftérs) or negative (1 or 2
stars). We chose the “apparel” domain as our target domaahal of the plots on the
bottom row of figure 4.2 are for this domain. We obtain empircurves for the error as

a function ofa by training a classifier using a weighted hinge loss. Supplosearget
domain has weight and there argm target training instances. Then we scale the loss of

target training instance bg and the loss of a source training instance}—Eg.

Figure 4.2 shows a series of plots of equation 4.1 (top rowpEm with corresponding
plots of test error (bottom row) as a function @ffor different amounts of source and
target data and different distances between domains. lIn@damn, a single parameter
(distance, number of target instances, or number of source instancess) is varied

while the other two are held constant. Note that #

mg "

The plots on the top row of

figure 4.2 are not meant to be numerical proxies for the trua ¢iFor the source domains
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“books” and “dvd”, the distance alone is well abdjje Instead, they are scaled to illustrate
that the bound is similar in shape to the true error curve hatrelative relatinships are
preserved. Note that by choosing a differéhtn equation 4.1 for each curve, one can
achieve complete control over their minima. In order to dvbis, we only use a single
value ofC'=1600 for all 12 curves on the top side of Figure 4.2.

First note that in every pair of plots, the empirical erronvas, like the bounds, have
a roughly convex shape. Furthermore the valuevofhich minimizes the bound also
has low empirical error for each corresponding curve. Thiggests that choosing to
minimize the bound of Theorem 4 and subsequently trainingssifier to minimize the
empirical erroré, (h) can work well in practice, provided we have a reasonable ureas
of complexity. Column (a) shows that more distant source doest@sult in higher target
error. Column (b) illustrates that for more target data, weehaot only lower error in
general, but also a higher minimizing

Finally, column (c) depicts the limitation of distant soerdata. With enough target
data, no matter how much source data we include, we alwaysrpgoeuse only the target
data. Intuitively this is because for any source domain with-zero distance from the
target, we cannot achieve zero error relative to the bagttéwypothesis. This is reflected
in our bound as a phase transition in the optimal value ¢figure 4.3). As we increase
the number of target instances, once the number crosselrdsholdm, =

c
CUsUr)?
using source data can only add noise, and thus we alwayg poafee only target data.

4.5 Learning from multiple sources

We now explore an extension of our theory to the case of melSpurce domains. We
are presented with data frof distinct sources. Each sourég is associated with an
unknown underlying distributio®; over input points and an unknown labeling function
f;. From each sourcg;, we are givenn; labeled training instances, and our goal is to use

these instances to train a model to perform well on a targeiado(Dr, f7), which may
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or may not be one of the sources. This setting is motivatecelagral domain adaptation
algorithms [37, 13, 39, 24] that weigh the loss from trainimgtances depending on how
“far” they are from the target domain. That is, each trainimgtance is its own source
domain.

As in the previous sections, we will examine algorithms thatimize convex combi-
nations of training errors over the labeled examples froohesaurce domain. As before,
we letm; = §;m with Zjil B; = 1. Given a vectola = (aq,---,ay) of domain

weights with} _; a; = 1, we define the empiricak-weighted error of functiok as

éal(h) = Zaj@j(h) = Z % > Ih(x) = fi@)].

IGS]‘
The truea-weighted errok, (k) is defined in the analogous way. LBt, be a mixture
of the N source distributions with mixing weights equal to the comgrats ofa. Finally,
analogous to\ in the single-source setting, we define the error of the rswltirce ideal

hypothesis to be

7 = min{er(h) + ealh)} = minfer(h) + Z aje;(h)} .

The following theorem gives a learning bound for empiriaabeminimization using the

empiricala-weighted error.

Theorem 5 Suppose we are given; labeled instances from sourcg for j = 1... N.
For a fixed vector of weighia, leth = argmin,, ., é(h), and leth’, = argmin,,,, e (h).
Then for anys € (0, 1), with probability at leastl — § (over the choice of samples from

each source),

er(h) < ep(hs) + 2

N 9

o [dlog2m — logd 1
Z_j\/ 8 5 & +2(7+_dHAH(Da,DT)) .
= ﬁj m 2

The full proof is in appendix A.4. Like the proof of Theoremitlis split into two parts.

The first part bounds the difference between ¢haveighted error and the target error
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result in minimal error. We observe one feature, which wetagaredict gender(a) At
train time we observe more females than mafb}Learning by uniformly weighting the
training data causes us to learn a suboptimal decision laoyr(d) but by weighting the

males more highly, we can match the target data and learntanalassifier.

similar to lemma 1. The second is a uniform convergence bdand, (/) similar to
lemma 2.

Theorem 5 reduces to Theorem 4 when we have only two sounce®favhich is the
target domain (that is, we have some small number of targ&mees). It is more general,
though, because by manipulatingwe can effectively change the source domain. At the
same time, we must pay for this generality by strengthenimgesumptions. Now we de-
mand that for everyx-weighted convex combination of sources, there exists atingsis
h* which has low error on both the combination of sources antkitget domain. Second,
we measure distance between the target and a mixture ofesyuather than between the
target and a single source.

One question we might ask is whether there exist settingsaxdeon-uniform weight-
ing can lead to a significantly lower value of the bound thamifoum weighting. This
can happen if some non-uniform weighting of sources acelyrapproximates the target
domain. As a hypothetical example, suppose we are tryingedigt gender from height
(Figure 4.4). Each instance is drawn from a gender-spec#igs&an. In this example, we

can find the optimal classifier by weighting the “males” aneifiales” components of the
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source to match the target.

4.6 Related work

Domain adaptation is a widely-studied area, and we canrmd tacover every aspect and
application of it here. Instead, in this section we focus threotheoretical approaches to
domain adaptation. While we do not explicitly address thati@hship in this thesis, we
note that domain adaptation is closely related to the gettfrcovariate shift, which has
been studied in statistics. The covariate shift settingiis wherePrs [x] # Pry [x], but
Prg [y|x] = Pry [y|x]. In addition to the work of Huang et al. [37], several othethaus
have considered learning by assigning separate weightsetedmponents of the loss
function corresponding to separate instances. Bickel 413].and Jiang and Zhai [39]
suggest promising empirical algorithms that in part inspur Theorem 5. We hope that
our work can help to explain when these algorithms are e¥kecDai et al. [24] considered
weighting instances using a transfer-aware variant of foogsbut the learning bounds
they give are no stronger than bounds which completely gtiwe source data.

Crammer et al. [23] consider learning when the marginal iBistion on instances is
the same across sources but the labeling function may chartge corresponds in our
theory to cases wher& ry, = 0 but X is large. Like us they consider multiple sources,
but their notion of weighting is less general. They consatdy including or discarding a

source entirely.

4.7 Summary

This chapter described a theoretical framework for domédap#ation.A key part of this
framework is theH A’H-distance, a measure of divergence between distributiocsisish
directly related to classification errorWe can use thé{AH-distance to estimate the

relative loss due to adaptation for different pairs of damdrom onlyunlabeleddata.
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The main theoretical result of this chapter is theorem 4 aanéeng bound for a procedure
which minimizes a convex combination of empirical sourcetargkt errors This bound

can be used to decide on an effective tradeoff between saacttarget training data.
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Chapter 5

Conclusion

Adapting statistical models to new domains is a crucial padpplying text processing
systems in the real world. Domain adaptation addressesttiaisn in which we possess
a large amount of labeled data from a source domain to traim@ehtbut little or no
labeled data from a target domain where we wish to apply thdemoTo the best of
our knowledge, this thesis represents the first attempt doead domain adaptation for
text by learning representations which minimize the dieege between source and target

domains.

Linear discriminative models for text achieve state-ad-#rt results by creating fea-
tures based on vocabulary items. Algorithms for estimatimgar models assume that the
training and testing data are drawn from the same distohutiut for domain adaptation,
this is not true. Differences in vocabulary create diffemistributions over features, and
this difference in the feature space leads empiricallygoificant increases in error. The
first part of this thesis, in chapters two and three, intreduan algorithm for domain
adaptation called structural correspondence learning Y864 examined its performance
on two text processing tasks. The second part, in chapter gawe a formal definition
for domain adaptation and proved generalization boundh&osetting when training data

and testing data are drawn from different distributions.
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SCL is a variant of the structural learning paradigm of Andd Zhang [3], a semisu-
pervised method which uses unlabeled data to discover acpvedsubspace. SCL uses
the techniques of structural learning to discover a sulespdmch is simultaneously pre-
dictive for both source and target domains. The key concelpiniol SCL is the selection
of pivot features which link the two domains. With these piteatures in hand, we learn
a representation by finding a linear projectidrfrom our original feature space onto a
low-dimensional subspace that is most predictive of thegaee of pivots in a particular
instance. This subspace implicitly aligns features froffedent domains because if two
non-pivot features are both predictive for the same set\adtpj then these features are
mapped to the same area of the low-dimensional subspaceathen train models us-
ing the projection of an instance onto this feature subspaith the intention that they
will generalize better to the target domain. In chaptereéhimee demonstrated the effec-
tiveness of SCL on models for sentiment classification ant gfaspeech tagging. We
showed that with only unlabeled target data, SCL can sigmifigamprove the perfor-
mance of a state-of-the-art linear model, and we exploredbating SCL with methods
for incorporating both source and target labeled data.tuagons when we have a small

amount of target data, SCL can make an even larger improvement

In chapter 4, we developed a formal framework for analyziiffgding source and
target domains. Standard generalization theory boundditieeence in training and test
performance when training and test sets are samples fromatme distribution. Our
theory yields bounds on the difference in performance thatased on the divergence
between the training and test distributions. While the djeace between arbitrary dis-
tributions is not measureable in general, we showed how plsiassumption can allow
us to measure the divergence using only unlabeled data. #sseme that there exists a
single predictor which is effective in both domains, thencae represent the divergence
using the hypothesis class from which our predictors arenaraVe call this divergence
the HAH-divergence, and it allows us to prove a generalization Howhich we can

compute from finite samples of unlabeled data.
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The representation learned by SCL significantly decreasds fi#{-distance between
the two domains, and as such significantly decreases the ofthe generalization bound.
We can also use thHH AH-divergence to prove a bound for the setting in which we have
available both source and target labeled data. In thisngettie examined algorithms
which minimize convex combinations of source and targedrerfhe resulting general-
ization bound intuitively captures the tradeoff betweemgshe large but biased source
training data and using the small but unbiased target trgidata. We showed for the
sentiment classification dataset that our bound makes atecpredictions about the rela-
tive error of different amounts of source and target trgrdata and different divergence
among domains.

We examined both the practical and theoretical sides of doagaptation. The theory
we developed addresses representation abstractly, thandlit doesn’t give any insights
into when and how SCL can perform well. In chapter two, we IthECL to the statisti-
cal method of canonical correlation analysis (CCA). KakadtFwster [40] showed how
CCA can be useful in a multi-view semisupervised learningrggttThey proposed first
learning a representation using CCA on unlabeled data. Thenubed that representa-
tion when estimating the parameters of a supervised linealein They showed that the
resulting CCA-based representation results in good predictader a simple assumption:
The optimal classifier from each view alone must have lowaegith respect to the joint
optimal classifier from both views.

Unfortunately, this assumption is too strong to permit aalgsis of SCL analogous
to their analysis of CCA. But it does seem natural to relax therapsions of Kakade and
Foster to incorporate an intermediate representation:iroméich one view is sufficient
for learning an optimal classifier for nearly every instgnogt where we don’t know a
priori which view it is. Such an analysis would provide diréleeoretical justification
for SCL, and we believe it will ultimately lead to new, simplgigorithms for domain

adaptation.
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Appendix A

Appendix

A.1 Proof of theorem 2

Let Z, € Ay denote the halfspace associated with hypothiesid letZS be the com-

plement of this halfspace. We need to show that

2—2 2%172 [és(h, 1) + éT(h, 0)] = 1}1;163% |P1"us [Zh] - PI‘MT [Zh”
max [2 — 2es(h, 1) + er(h, 0)] = max|Pryg [Z,] — Pry [Z3]]

It suffices to show that for everly € 'H
2—2 [Es<h, 1) + GT(h7 0)] = ‘Prus [Zh] - PI"MT [Zh” .

Let I [x € Us| be the indicator function which is 1 when the vectois a member of the
sample. Below, when we writ®__, this indicates a summation over only thosé our

joint samplelds | Ur.

22[es<h71>+eT<h,0>}2%( Iketh]+ 3, I[X€Us1)

x,h(x)=0 x,h(x)=1



(I[xelUr]+1[xelUs])+ (I [x € Ur] + I [x € Us])

3=

= |Pryg [Zn] — Proy. [Z4]]|

The last step follows from the identifyr,, [Z] = 1 — Pry [Z)).

A.2 Proof of theorem 3

Below we useAineq to indicate that a line of the proof follows by application tbe

triangle inequality [10, 23].

er(h) < ep(h*) +er(h,h*)  Aineq
< er(h) + es(h, ) 4 ler(h, ) — es(hh*)|  Aineg
< er(h") +es(h,h) + %dHAH(DSa Dr)
< er(h*) +es(h) + es(h”) + Sdwan(Ds, Dr)  Aineq
= es(h) + %dHAH(DS, Dr)+ XA Aineq
< es(h) + %JHAH(US,UT) + 4\/2d10g(2mn;)/—|— log(3) +A

The last step in the proof is an application of theorem 3.4nf{@2], together with the
observation that since we can represent eyeeyHA’H as a linear threshold network of
depth 2 with 2 hidden units, the VC dimensiorféfAH is at most twice the VC dimension
of H [6]. ]
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A.3 Proof of main theorem

A.3.1 Proofoflemmal

ea(h) — ex(h)] = (1 — a)les(h) — ex(h)|
< (1 - a) [les(h) — es(h,b*)] + les(h, h*) — ex(h, h)| + ler(h, 1*) = ex(h)]
< (1—a)[es(h*) + |es(h, h*) — ep(h,B)| + er(h*)]  Aineg

<(1- Oé)(%dHAH(DSaDT) +A)

A.3.2 Proof of lemma 2

We begin by restating Hoeffding’s inequality.
Hoeffding’s inequality
If X1, X5,...,X, areindependentand < X; < b;(i =1,2,...,n), then fore > 0

Pr [|X — B[X]| > €] < 272/ Zinbima)®

whereX = (X; + -+ + X,,)/n.

Let Xi, ..., Xsn be random variables that take on the valgé's(z) — fr(z)] for the
Bm instances € Sp. Similarly, let Xg,,.1, ..., X,, be random variables that take on the
valuesi=2 5lh(z) — fs(x)| for the (1 — B)m instances: € Ss. Note thatX;, ..., Xgn €

[0, 5] and X g1, ..., X € [0, =2 5). Then

€a(h) = aép(h) + (1 — a)és(h)

a—2|h y+(1—a Z|h

:DEST CISESS
1
= — g X;.
m “
=1
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Furthermore, by linearity of expectations

Eléq(h)] = % (ﬁm%eT(h) +(1- 5)”@1 = g

= aer(h) + (1 — a)es(h) = €4 (h).

es(h)>)

So by Hoeffding’s inequality the following holds for evelly

Pr[[éa(h) — €a(h)| > €] < 2exp (Zf’il_rza:g;()(i))

—2m?2e?

o (3) + 1= 9 (1)’

—2me?
— 2 exp m .
5T 1

The remainder of the proof for hypothesis classes of finitedi#t@ension follows a

= 2exp

standard argument. In particular, the reduction to a finfokhesis class using the growth
function does not change [64, 6]. This, combined with theonrbound gives us the
probability that there exisnyhypothesis: € H, |é,(h) — e, (h)| > €. Substituting) for

the probability and solving gives the lemma

B a? (1 —a)?\ dlog(2m) —logd
6_\/(ﬁ+ [y ) 2m

A.3.3 Proof of theorem 4

The proof follows the standard set of steps for proving leybounds [6], using Lemma 1
to bound the difference between target and weighted ermatd. amma 2 for the uniform
convergence of empirical and true weighted errors. Below se L, L2, and Thm3

to indicate that a line of the proof follows by application lobmma 1, Lemma 2, or
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Theorem 3 respectively.
~ 1
ET(h) < Ea(h) —+ (1 — Oé) (§dHAH(D57DT> + )\) (L1)

<eh)+ \/(a_2+(1—a)2> dlog(2m) —1og5+(1_a) (%dHAH(D&DT)‘I‘)\) -

-3 om
< éa(h*T>+\/ (%2+ (11__‘2)2) dlog@?;_ 80 L (1-a) (%dwf(l?s, DT>+A)
< ea(hi})+2\/ (%2+ (11__032) dlog(z;;z_bgéﬂl — ) edmnws, DT>+A) (12)
geT<h;;>+z\/ (5 + =) T 1 - ) (ebean(Ps. Pr) )
< eT(hi})H\/ (%2+ (11__032) dlog(z;;i_bg g

2dlog(2m’) + log(3)

m/

2(1 - Oé) (%dHAH(Us,UT) + 4\/ + )\) (Thm 3)

A.4 Proof of theorem 5

Lemma 3 Leth be a hypothesis in clags. Then|eo(h) —er(h)| < dyar(Da, Dr) +7,

Proof:

lea(h) — er(h)| < [lea(h) — €alh, h7)| + [ealh, h*) — er(h, h*)|+
ler(h, h*) — er(h)|] Aineq

< lea(h") + |€a(h, B*) — ep(h, B*)| + er(h™)] Aineq

1
< (idHAH<Da7DT) +7)
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Lemma 4 Let’H be a hypothesis space of VC-dimensiorif a random labeled sample
of sizem is generated by drawing;m points fromD;, and labeling them according tf,

then with probability at least — § (over the choice of the samples), for evérg H.:

Ea(h) — ea(h)| < Z%;\/dlog@;n%—logé

Proof: Because of its similarity to the proof of Lemma 2 (in AppendixBA), we will

omit some details of this proof. LeYy,..., X, be random variables that take on the
values‘g—j_'|h(x) — fj(z)| for the ;m instances: € S;. Note thatX;, ..., X3 ., € [0, Z—;’].

Then

m

fall) = Yo asts(h) = 3o a3 (o) = (o) = - Y X

777 xes; i=1

By linearity of expectations again, we haké¢,,(h)] = eq(h).
By Hoeffding’s inequality the following holds for every.

Pr[|éa(h) — ea(h)| = €] < 2exp (zmﬁg;m)

(2m62>
= 2exp = | -
2%

The remainder of the proof is identical to the proof of lemma 2 u

The proof of theorem 5 uses lemmas 3 and 4 and follows an driigument to the

proof of Theorem 4.
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