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Why should | know about machine
leaming?

e

o

ACL 2008: 50 of 96 full papers mention
learning, or statistics Iin their titles

o

4 of 4 outstanding papers propose new
learning or statistical inference methods
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Running with Scissors: A Memoir
Title: Horrible book, horrible.

This book was horrible. | read half of it,
suffering from a headache the entire time, and
eventually i lit it on fire. One less copy in the
world...don't waste your money. | wish i had the

time spent reading this book back so i could use

it for better purposes. This book wasted my life
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Example 2: Relevance Ranking
Un-ranked List

Ranked List

[y Live Search HARIE= 4R
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Example 3: Machine Translation

Input: English sentence

Output: Chinese sentence
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Course Outline

1) Supervised Learning [2.5 hrs]
2) Semi-supervised learning [3 hrs]

3) Learning bounds for domain adaptation
[30 mins]
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Supervised Leaming Outline‘
1) Notation and Definitions [5 mins]
2) Generative Models [25 mins]
3) Discriminative Models [55 mins]

4) Machine Learning Examples [15 mins]
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Training and testing data

Training data: labeled pairs (x, y)

B B.D

Use this function to label unlabeled testing data
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Feature representations of x '

(x,y=-1) Feature vector x
E : 310 ---0[1|0---0|2
" l f \
horrible read_ half waste
<X’ = _|_1> Feature vector x
L 0I2/0---01110---0
. ‘ // SN \\

horrible  excellent loved it
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(Generative model

Choose a model p(x,y) to describe training data

p(x,y) = p(y)p(x|y)
p(y) is Bernoulli
p(x|y): Use the Naive Bayes assumption

p(x|y) = Hp(xq;ly)

Example p(horrible | — 1)
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Graphical Model Representation
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Encode a multivariate probability distribution

Nodes Iindicate random variables

Edges indicate conditional dependency
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Graphical Model Inference

Vg
horrible  Waste read_half ~

L

Given p,x’,vy’, what is p(x?,y7)?

Graphical model semantics:

p(x) = Hp(fcz- pa(z;))

o



Microsoft
Research

IR S S BT ST PR

Inference at test time

®* Given an unlabeled instance,
how can we find its label?

%

L

We have p(x,y), but what is h(x)?

L

Just choose the most probable label y

f(z) = argmax p(y|x)

Y

B p(xX,y)

= argmax = argmax p(X,y)
Y p(x) Y
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Estimating parameters from training data

Back to labeled tralnlng data: (x’,y’) j=1...n
A—*’—I ——

What should p(y) be? — count(y)

n

| count(z;,y)
What should p(z;|y) be? count(y)
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Multiclass Classification
* Query classification Y/
_ 4 Travel A
* |nput query: X i Technology
“HIRE AL H News
— Entertainment

o

ye{l, ... k} p(y) is multinomial

o

Training and testing same as in binary case
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Maximum Likelihood Estimation

* Why set parameters to counts?

» Maximize likelihood: H?:1 p(Xj )

* Set 0 to solve argmax Z?:l log p,(Xj’ yj)
pl

.
s.t. > . _p(x) =1

P'ly=+1)+p'(y=-1)=1
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MLE — Label marginals
min |max Z;’:l logp’(xj, yj) + AP (y—1)+p (y1)—1)

A P’ (y)

dLL _Z 1 L\

dp’(9) ~— 4—=3,y7=79 p’(y7)

=0 (y-1)+p' () -1

Setting the partial derivatives to 0, we have

B count(y1)
P(U1) = Gamitn Teomniz D)
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Problems with Naive Bayes
® Predicting broken traffic lights ::a

y = —1(broken) or +1(working) ™ Yy

p(y:—l)Z% p(y:_l_l):g Tr1 X9

xr1,To = lights 1 & 2.

o

Lights are broken: both lights are red always
Lights are working: 1 isred & 1 is green

p(red|—1) =1 p(red|+1) = 3

o
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Problems with Naive Bayes 2

® Now, suppose both lights are red. What will our
model predict?

P-Lrr) = x1x1=2 p(+lnr) =

I _ 3
2~ 14

X X

1
2

~|

® \We got the wrong answer. Is there a better
model?

Let p(—1) = 3. Then we find that p(—1,7,7) > p(1,r,r).

* The MLE generative model is not the best model!!
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More on Generative models

* We can introduce more dependencies Y
. p(—I—I, T, 7") — 0 1 L9
* This can explode parameter space

L

Discriminative models minimize error -- next

L

Further reading

K. Toutanova. Competitive generative models with structure
learning for NLP classification tasks. EMNLP 2006.

A. Ng and M. Jordan. On Discriminative vs. Generative Classifiers:
A comparison of logistic reqgression and naive Bayes. NIPS 2002
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Discriminative Leaming

®* We will focus on linear models
g(x) =sgn [wix —b| .
NB is a linear model with

w; = log p(x;|y) and b(y) = log p(y)

* Model training error

é(g9) = Doimq I (g(x:) # vi)
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0-1 loss (error): NP-hard to minimize
over all data points

- [ Exp loss: exp(-score): Minimized by
AdaBoost

Hinge loss: Minimized by
support vector machines
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Single instance score: w!x/ — b
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Binary classification: \Weak hypotheses

Let S = {(s7,x7,97)}7_; be a weighted sample.
We say that h is a weak learner if eg(h) < 2 — v

L

In NLP, a feature can be a weak learner

0, otw

L

Sentiment example: h(”excellent”) = +1
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The AdaBoost algonthm

Input: training sample {(x7,y’) nye{-1,H}
(1) |Initialize D; = =
(2) Fort=1..T

Train a weak hypothesis £ to minimize error on D;

h; = argmin €p, (h')
h’

Set .
Dy (2) eXP(—Oét y’ he(z?)

Update Dt_|_1 (j) < 7,

(3) Output model g(x) =argmax(y_,_; cuhe(x,y)) .
Y
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A small example
X e pgd B
(——= ) é =) <3 f <3 4
Excellent book. Excellent | | Terrible: The plot was Awful book. Couldn’t
The_plot was riveting || read boring and opaque follow the_plot.

Weak learner Training set labels  Distribution Dy

BEE ——-—-
B EE ittt
: E 8 ——

Begin
hi(x) = (excellent, +1)
ho(x) = (the_plot, —1)

4

o

4

ho(x) = (excellent, +1)
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Setting oy

®* Bound on training error [Freund & Schapire 1995]

gHZt H(ZDt exp( oztyjht(xj)) .

¢ We greedily minimize error by minimizing Z;

p = argmln Z D:(j) exp (—awy’ he(x7)) .
71=1



Microsoft
Research

R I & TP

A closed form solution for oy

1 (1_€Dt>
o = — log .
2 €D,

® For proofs and a more complete discussion

Robert Schapire and Yoram Singer.

Improved Boosting Algorithms Using Confidence-
rated Predictions.

Machine Learning Journal 1998.
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Exponential convergence of errorin t

®* Plugging in our solution for &'¢, we have

e(9(x)) < exp —QZT: (% = EDt)Q

¢ \We chose n; to minimize €p,. Was that the
right choice?

We know that for every weighted sample S, there
exists a weak learner hg such that eg(hg) < % —

. This gives €(g(x)) < exp(—2T~*) < 02T
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What happens when an example is
mis-labeled or an outlier?

Exp loss exponentially penalizes
Incorrect scores.

Hinge loss linearly penalizes
Incorrect scores.

Single instance score: w!x/ — b
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Support Vector Machines

* Linearly separable Non-separable
N \\
\\/ \\\
N\ N
N\ N,
S

g(X) — 15[)1 -+ 1512‘2 — 1

w = (1,1) is the normal to
the separating hyperplane
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® | ots of separating ® Choose the hyperplane
hyperplanes. Which with largest margin 7
should we choose?
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Max-margin optimization

max -y
[|w| <1,y

s.t. V) z@

score of correct label greater than margin 7

)

o

» Scaling the weight vector doesn’t change the
optimal hyperplane
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Equivalent optimization problem

1

mm —HWH2

0

0

With fixed margin for each example
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Back to the non-separable case

* We can't satisfy the /
margin constraints ~ ¥
\A/
®* But some hyperplanes PRaSER
are better than others —
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Soft margin optimization

* Add slack variables to the optimization

1
min \W\Q
?€>0

s.t. Vi ylwlxd 1

Allow margin constraints to be violated
But minimize the violation as much as possible

o

o
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Optimization 1: Absorbing constraints
min éuwuucz@-

s.t. Vg 5321—y3w x7 & >0

Vi, & :@ —y'w D—*loss

min %HWHQ +CZmaX 1 —y'w'x’,0]
y
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Max creates a non-differentiable
point, but there is a subgradient

Subgradient:
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Stochastic subgradient descent

o

Subgradient descent is like gradient descent.
Also guaranteed to converge, but slow

Pegasos [Shalev-Schwartz and Singer 2007]

» Sub-gradient descent for a randomly selected
subset of examples. Convergence bound:

After T iterations @@

Objective after Best objective _
T iterations value Linear convergence

o

o
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SVMs for NLP

* We've been looking at binary classification
» But most NLP problems aren'’t binary

+ Plece-wise linear decision boundaries

* We showed 2-dimensional examples
» But NLP is typically very high dimensional

» Joachims [2000] discusses linear models in high-
dimensional spaces
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Kemels and non-lineanty

* Kernels let us efficiently map training data
iInto a high-dimensional feature space

¢ Then learn a model which is linear in the new
space, but non-linear in our original space

®* But for NLP, we already have a high-
dimensional representation!

® Optimization with non-linear kernels Is often
super-linear in number of examples
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More on SVMs

* John Shawe-Taylor and Nello Cristianini.
Kernel Methods for Pattern Analysis.
Cambridge University Press 2004.

¢ Dan Klein and Ben Taskar. Max Margin
Methods for NLP: Estimation, Structure, and
Applications. ACL 2005 Tutorial.

¢ Ryan McDonald. Generalized Linear Classifiers
In NLP. Tutorial at the Swedish Graduate
School In Language Technology. 2007.
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SVMs vs. AdaBoost

SVMs with slack are noise tolerant

AdaBoost has no explicit regularization
» Must resort to early stopping

AdaBoost easily extends to non-linear models

Non-linear optimization for SVMs Is super-
linear in the number of examples

» Can be important for examples with hundreds or
thousands of features
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More on discnminative methbds

* Logistic regression: Also known as Maximum
Entropy

» Probabilistic discriminative model which directly
models p(y | X)

o

A good general machine learning book
» On discriminative learning and more

» Chris Bishop. Pattern Recognition and Machine
Learning. Springer 2006.
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Leaming to rank

Input: queries and documents (q;, {d;;};2;)7
partial ordering r;(7, k)

[y Live Search HRES A E

1,r(5) < ()
o) R 1)~ 0.1 )
2) +1,7(2) > r(j)
- r(1,4) = —1
r(3,4) =0
(4) e r(3,1) = +1

www.insun.hit.edu.cn/
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Features for web page rankihg

We will use a linear model to rank
documents by their scores w’ f(q;, d; ;)

® Good features for this model?

(1) How many words are shared between the
guery and the web page?

(2) What is the PageRank of the webpage?
(3) Other ideas?
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Optimization Problem

m“irn %HWHQ —I—C;:S:TIOSS(”L 7, k)

7 7 k>j

(loss(i, )= €0 KW [F (e, f@'

® |oss for a query and a pair of documents

Score for documents of different ranks must be
separated by a margin

¢

L)

o
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Come work with us at Microsoft!

® http://www.msra.cn/recruitment/



